
Computer Science Review 38 (2020) 100285

S
S

s

h
1

Contents lists available at ScienceDirect

Computer Science Review

journal homepage: www.elsevier.com/locate/cosrev

A comprehensive survey and analysis of generativemodels inmachine
learning
Harshvardhan GM ∗, Mahendra Kumar Gourisaria, Manjusha Pandey,
iddharth Swarup Rautaray
chool of Computer Engineering, Kalinga Institute of Industrial Technology, Deemed to be University, Bhubaneswar, 751024, Odisha, India

a r t i c l e i n f o

Article history:
Received 18 April 2020
Received in revised form 28 June 2020
Accepted 11 July 2020
Available online 30 July 2020

Keywords:
Generative models
Machine learning
Deep learning
Neural networks
Bayesian inference

a b s t r a c t

Generative models have been in existence for many decades. In the field of machine learning, we come
across many scenarios when directly learning a target is intractable through discriminative models, and
in such cases the joint distribution of the target and the training data is approximated and generated.
These generative models help us better represent or model a set of data by generating data in the
form of Markov chains or simply employing a generative iterative process to do the same. With the
recent innovation of Generative Adversarial Networks (GANs), it is now possible to make use of AI to
generate pieces of art, music, etc. with a high extent of realism. In this paper, we review and analyse
critically all the generative models, namely Gaussian Mixture Models (GMM), Hidden Markov Models
(HMM), Latent Dirichlet Allocation (LDA), Restricted Boltzmann Machines (RBM), Deep Belief Networks
(DBN), Deep Boltzmann Machines (DBM), and GANs. We study their algorithms and implement each of
the models to provide the reader some insights on which generative model to pick from while dealing
with a problem. We also provide some noteworthy contributions done in the past to these models
from the literature.

© 2020 Elsevier Inc. All rights reserved.

Contents

1. Gaussian mixture models .. 3
2. Hidden Markov models ... 4
3. Latent Dirichlet allocation ... 4
4. Boltzmann machines .. 6

4.1. Restricted Boltzmann machine .. 6
4.2. Deep belief networks .. 7
4.3. Deep Boltzmann machines ... 7

5. Variational autoencoders ... 9
5.1. Autoencoders.. 9
5.2. Variational autoencoders .. 9

6. Generative adversarial networks .. 11
6.1. Deep convolutional GANs (DCGAN)... 12
6.2. Fully connected and convolutional GANs (FCC-GAN).. 12
6.3. Conditional GANs (CGAN) ... 13
6.4. Stack GANs (SGAN).. 14

7. Analysis and discussion ... 15
7.1. Analysis of deep generative models .. 16

7.1.1. Implementation of Restricted Boltzmann Machine.. 19
7.1.2. Implementation of deep belief network.. 19
7.1.3. Implementation of Deep Boltzmann Machine .. 19
7.1.4. Implementation of variational autoencoder ... 20

∗ Corresponding author.
E-mail addresses: harrshvardhan@gmail.com (Harshvardhan GM), mkgourisaria2010@gmail.com (M.K. Gourisaria), manjushafcs@kiit.ac.in (M. Pandey),

iddharthfcs@kiit.ac.in (S.S. Rautaray).
ttps://doi.org/10.1016/j.cosrev.2020.100285
574-0137/© 2020 Elsevier Inc. All rights reserved.

https://doi.org/10.1016/j.cosrev.2020.100285
http://www.elsevier.com/locate/cosrev
http://www.elsevier.com/locate/cosrev
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cosrev.2020.100285&domain=pdf
mailto:harrshvardhan@gmail.com
mailto:mkgourisaria2010@gmail.com
mailto:manjushafcs@kiit.ac.in
mailto:siddharthfcs@kiit.ac.in
https://doi.org/10.1016/j.cosrev.2020.100285

2 Harshvardhan GM, M.K. Gourisaria, M. Pandey et al. / Computer Science Review 38 (2020) 100285

t
f
r
c
d
t
c
i
s
t
c
t
s
p
w

t
m
m
d
i
d

d
X

P

I
i
p
t
c
t
d
s
i
a
c
n
d
t
n

7.1.5. Implementation of generative adversarial network... 20
7.2. Analysis of pure ML-based generative models .. 21

7.2.1. Implementation of Gaussian mixture models .. 22
7.2.2. Implementation of latent Dirichlet allocation .. 22
7.2.3. Implementation of hidden Markov models .. 23

7.3. Comparisons ... 25
7.4. Difficulty of analysing generated samples .. 25
7.5. Future directions.. 25
Declaration of competing interest.. 27
.. 27
References ... 27
2
(
(

Introduction

Modern day machine learning classifiers mainly include logis-
ic regression, support vector machine (SVM), supervised feed-
orward deep neural networks, nearest neighbour, conditional
andom fields (CRFs), etc. All of these models focus on the dis-
riminative classification process — where they only model the
ecision boundary between the classes by learning directly from
he training data. However, with generative models, this is not the
ase as these models assume that data is created by a probabil-
ty distribution which is then estimated and a distribution very
imilar to the original one is generated. The probability of the
arget variable conditioned on the given input variable is then
alculated based upon this generated distribution. Fundamen-
ally, both discriminative and generative classifiers perform the
ame task because of the last step of calculating the conditional
robability of the target variable. Mathematically speaking, if
e have two variables X and Y as the independent and target

variable respectively, discriminative classifiers only estimate the
parameters of P(Y |X) whereas generative models estimate the
distribution given by P(X |Y) and P (Y) with particular algorithms,
finally using Bayes’ rule to calculate P (Y |X). The Naïve Bayes’
classifier is based on this principle, which is also considered to be
generative. One may arbitrarily sample from P(Y |X), compute the
modes of the distribution argmaxYP(Y |X), or find expectation of
he distribution P(Y |X). Before estimation, this joint distribution
ay be constrained to having lower degrees of freedom which
ay be done by structurally studying the conditional indepen-
encies between all the variables of the joint distribution as
llustrated by Fig. 1 for n variables X1, X2, . . . , Xn of the joint
istribution P(X1, X2, . . . , Xn).
Fig. 1 demonstrates the factorization product of conditional

istributions over variables conditioned on parents πi for variable
i as,

(X1, X2, . . . , Xn) =

n∏
i=1

P(Xi|Xπi) (1)

n many cases, it is difficult to directly estimate the probabil-
ty of Y conditioned on X hence we use generative models to
roduce a distribution which resembles the original distribu-
ion of the probability of X conditioned on Y to then run a
lassifier similar approach and calculate the probability of the
arget Y conditioned on X . Training generative models, especially
eep generative models, takes longer than discriminative models
ince creating a probability distribution resembling the original
nvolves a substantially higher number of correlations to learn
s opposed to simply labelling instances to their most probable
lasses as discriminative models do. For example, a convolutional
eural network (CNN) classifier only has to spot a few tell-tale
ifferences between the images of cats and dogs to differentiate
hem as opposed to a deep convolutional generative adversarial
etwork (DCGAN) which has to generate images of cats and dogs
Fig. 1. A directed graph model.

by learning all the features, even the ones that the CNN may have
skipped. Fundamentally, discriminative models only draw the de-
cision boundary in a data space, whereas generative models learn
the overall distribution of the data. Generative models, as we shall
see, have their contemporary uses as powerful feature extraction
tools [1], or in regression, clustering and classification [2], pattern
recognition followed by generation [3,4], recommendations [5],
topic modelling, text generation, etc. Classifiers have recently
found useful applications in object tracking and detection through
algorithms like the Single Shot Detection [6], YOLO (You Only
Look Once) [7], Faster R-CNN [8] and Masked R-CNN [9] which
take the normal classification of visual data one step further
by detecting objects within a picture with apt bounding boxes.
These approaches are used in cutting-edge research in the field
of self-driving cars and computer vision based automation in the
industry. Classifiers also find extensive use in biological appli-
cations in diagnosis of diseases [10], weather prediction [11],
assessment of potential high-risk loan applicants for banks [12],
and even used in sorting important and spam mail in every
modern day emailing services like Gmail, Yahoo!, etc.

We notice that there is a huge focus on discriminative mod-
elling, in other words, classifier-based approaches in problem
solving while generative models have not yet sought compara-
ble prominence. The use of generative models is of paramount
importance, the reason being two-fold: (a) they may be used
to select indicative features and act as feature selection tools
to facilitate classification and increase model accuracy, and (b)
they can be applied to generate realistic data samples which
is not something the discriminative models are capable of. The
motivation of this survey arises from these two pertinent aspects
of generative models, combined with the fact that the amount of
research done on them does not do justice to their capabilities.

In this paper, we introduce all the generative models (and
thus put forward an exhaustive list) section-wise and review
the work done on them as: 1. Gaussian Mixture Models (GMM),
. Hidden Markov Models (HMM), 3. Latent Dirichlet Allocation
LDA), 4. Boltzmann Machines (BM), 5. Variational Autoencoders
VAE), 6. Generative Adversarial Networks (GAN), and 7. Analysis
and Discussion, where we analyse and implement all the models
discussed in this paper and compare them so the reader can gain

Harshvardhan GM, M.K. Gourisaria, M. Pandey et al. / Computer Science Review 38 (2020) 100285 3

G
o
t

i
o
t
c

1

d
a
d
a
t
d
s
c
µ

m
i∑
T
t
i

u
{

p
d
g

P

Fig. 2. Classification of different generative models discussed in this paper with respect to ML and DL (Machine Learning and Deep Learning).
w
f
c

P

Fig. 3. Mixture of three Gaussians where π signifies the weight associated to the
aussian and hence also the probability of the data belonging to the ith cluster
r Gaussian, µ specifies the position of the Gaussian with the mean, ρ signifies
he ‘spread’ of the Gaussian over the overall distribution by the variance.

nsights on which model (if they are looking to implement one
f the generative models for a task) to pick from to best suit
heir needs. The models discussed in this paper are differently
lassified under machine learning as shown in Fig. 2.

. Gaussian mixture models

A Gaussian distribution is simply another name for a normal
istribution which is continuous for a real valued random variable
nd is symmetric about its mean. The probability of occurrence of
ata is more likely in the vicinity (left and right sides) of the mean
nd tapers off at the edges tending to be zero or becoming asymp-
otic to a real value like zero. In certain situations, we deal with
ifferent Gaussians (or curves that are normally distributed) in a
ingle graph (Fig. 3). The magnitude of these different Gaussians
an be represented by weights π = {π1, π2, π3, . . . , πn}, mean
= {µ1, µ2, µ3, . . . , µn}, variance ρ = {ρ1, ρ2, ρ3, . . . , ρn}, for a
ixture of n Gaussians. In our case, n = 3 and 0 ≤ πi ≤ 1, where
∈ {1, 2, 3}. The weights are such that,
n

i=1

πi = 1 (2)

he magnitudes of the weights associated to each Gaussian sum
o 1 as they represent the prior probability of finding that cluster
when taking into consideration the set of all the data.
Since our Gaussian mixture model is in one dimension, each

nique cluster can be identified by the 3-tuple format given by:
πi, µi, ρ

2
i }. In 2D, πi is a vector and ρi a covariance matrix. The

rior probability of any random data point zk from a dataset of
points (where 1 ≤ k ≤ d) to belong to a particular cluster i is
iven by the equation,

z = i = π , (3)
(k) i
here the argument of the probability P is the cluster assignment
or observation zk. However, if we are given that zk is from a
luster i, the likelihood of observing xk is given as,

(xk | zk = i, µi, ρi) (4)
= N(xk | µi, ρi)

N(xk | µi, ρi) is the likelihood which is a single Gaussian with
a mean µi and variance ρi. Another equation that represents a
weighted Gaussian mixture model with N components can be
written as,

P(x | ϑ) =

N∑
k=1

wib(x | uk, ρk), (5)

where ϑ is the 3-tuple format used to identify clusters as dis-
cussed before and b(x | uk, ρk) are the component Gaussian den-
sities for k = 1, 2, . . . ,N defined by,

b(x | uk, ρk)

=
1

(2π)M/2|ρk|
1/2 e

−
1
2 (x−µk)(

∑
k(x−µk)−1) (6)

for a mixture of Gaussians in an M dimensional space.
GMMs are considered a generalization of the K-means clus-

tering algorithm [13] because the latter is only prominent at
detecting clusters of a circular shape in 2D (and hyper-sphere in
higher dimensions). However, GMMs can form clusters of oblong
nature as illustrated in Fig. 4.

Albeit GMM can be termed as a clustering algorithm, it is
more correct to call it an algorithm for density estimation. When
the GMM fits on a data, it is a generative probabilistic model
giving us the recipe to generate new data distributed similar to
the distribution to which the GMM was fit. [14] mentions the
Kullback–Leibler (KL) Divergence technique which is a tool used
for statistics and pattern recognition. The KL divergence is used
to measure the similarity between two density functions p(x) and
q (x) defined by:

D(p ∥ q) =

∫
p (x) log

p (x)
q (x)

dx (7)

D(p ∥ q) is always ≥ 0 and is 0 iff p = q. This method is not
analytically tractable and hence [14] puts forward two methods
namely variational approximation and variational upper bound
to measure the similarity between GMMs. GMMs are also used
in language identification systems as described in [15] where
the two approaches mentioned use shifted delta cepstra (SDC)
feature vectors. The first approach is based on acoustic scoring
which is an identification system composed of a pre-processor
to extract features, a backend classifier and a Gaussian mixture
of all the target languages. The second approach is done through

4 Harshvardhan GM, M.K. Gourisaria, M. Pandey et al. / Computer Science Review 38 (2020) 100285
Fig. 4. (Left): Data clustering done by GMMs for oblong data (oval in this case). If visualized in 3D, these datapoints may be coplanar and lying on the surfaces of
a circular planes inclined at different angles. (Right): Data clustering done by K-means algorithm which is a special case of GMM clusters for circular clustering. It
is clearly visible that GMMs outperform K-means clustering algorithms for a generalized dataset.
a
f

e
t
a
D
T
d
m
d
e
d
t
e
d

c
w
a
l
N
f
d
s

w
t
D
b

D

GMM tokenization as shown in Fig. 5 which comprises a parallel
sequence of GMM tokenizers which feed a bank of tokenizer
dependent interpolated (unigram and bigram) language models.
A sequence of symbols is generated by each tokenizer which
corresponds to the per frame indices of the Gaussian component
having the highest score. Now, the likelihood of each of these
sequences is fed to the language models which generate scores
for the corresponding language. These scores are given to the final
backend classifier to get the results.

GMMs have been used for speech recognition [15] and even
more sophisticated tasks like accent recognition [16]. The imple-
mentation for GMMs is demonstrated in Section 7.2.1.

2. Hidden Markov models

Hidden Markov models are used to generate sequences named
as Markov chains that are a series of states having certain state-
transition probabilities which generate state sequences having
corresponding symbol-emission probabilities (Fig. 6). The series
of states are said to be Markov chains because the probabil-
ity of reaching the next state is dependent on the transition
function of the current state. HMMs are used in statistical mod-
elling for linear problems involving time series or sequences and
have many common links with probabilistic non-deterministic
finite automata. In fact, as proven in [17], HMMs are equiva-
lent to probabilistic automata with no final probabilities which
can be converted into equivalent probabilistic non-deterministic
finite automata. Hidden Markov models describe a probability
distribution over a non-finite number of possible sequences.

The probabilistic automata as shown in Fig. 6 generate hid-
den state sequences based on the state transition probabilities.
Each state emits residues or symbols based on their symbol-
emission probabilities and finally we have an observable symbol
sequence. On the contrary, the Markov chain (state sequence) that
led to these emissions are not observable; they are hidden and
hence the name hidden Markov models. HMMs are a probabilis-
tic representation of a system they model, so these states and
their transitions need to be constructed which aptly describe the
behaviour of the system.

Hidden Markov models have been extensively used for speech
recognition [18–21] and in other instances, for biological se-
quence modelling [3,4] and optical character recognition (OCR)
[22]. The implementation for HMMs is demonstrated in Sec-
tion 7.2.3.
3. Latent Dirichlet allocation

Latent Dirichlet Allocation (LDA) [23] is a generative technique
mainly used for topic modelling, although, more broadly, is con-
sidered a dimensionality reduction technique. Topic modelling
is the process of making a machine predict the relevant topics
ssociated with the input text. We next describe the process
ollowed by LDA to achieve this.

LDA assumes there to be a vocabulary with W distinct words,
ach word described by Wj where 0 ≤ j ≤ W − 1 and T different
opics. Each topic Ti, where 0 ≤ i ≤ T − 1, is described by
probability distribution ωTi over all the W words each with
irichlet prior β . Then ωTi,Wj denotes the probability of topic
i being represented by word Wj. If there are D documents (by
ocuments, we do not mean the entirety of an actual docu-
ent containing many paragraphs, instead, it is implied that a
ocument can be seen as a block of text or a paragraph) then
ssentially β is defined as the distribution of words W over all
ocuments D. Similarly, another Dirichlet prior α is defined as
he distribution of topics T over all documents D. Let z notate
ach topic which is assigned to each word thereby making each
ocument a mixture of these topics. Let there be NDk words in

each document Dk where 0 ≤ k ≤ D − 1 and probability
distribution of each document over all the topics given by ϕDk
drawn from the Dirichlet distribution with parameter α. So, we
an say ϕDk,Ti is the probability that document Dk is associated
ith topic Ti. Assuming α, β as scalars (which, however, we take
s vectors in Fig. 7 and while defining the Dirichlet distribution
ater), LDA involves iterating through each document Dk having
Dk words. For word Wj, a topic assignment is drawn zDk,Wj
rom the categorical distribution ϕDk , and then a word VDk,Wj is
rawn from the categorical distribution ωzDk,Wj

. The algorithm is
ummarized as follows:

1. Draw ϕTi ∼ Dir(β) for each 0 ≤ i ≤ T − 1.
2. Consider Dk for each 0 ≤ k ≤ D − 1:

(i) Draw ωT ∼ Dir(α)
(ii) Draw zDk,Wj ∼ Cat

(
ϕDk

)
for each 0 ≤ k ≤ D − 1

(iii) Draw VDk,Wj ∼ Cat(ωzDk,Wj
) for each 0 ≤ k ≤ D − 1,

here Cat denotes the categorical distribution and Dir denotes
he Dirichlet distribution whose argument is either one of the
irichlet priors α or β . The Dirichlet distribution parameterized
y vector α is given by:

ir
(
ϕDk |α

)
=

1
µ(α)

D−1∏
Dαk−1
k , (8)
k=0

Harshvardhan GM, M.K. Gourisaria, M. Pandey et al. / Computer Science Review 38 (2020) 100285 5

g
S
w

w

µ

Fig. 5. P. A. Torres-Carrasquillo et al. The implementation of GMM tokenization system.
Fig. 6. A simplified HMM with no initial and final states for the sake of simplicity. Let there be a set of symbols defined by S = {S1, S2, S3, S4}. The two states that
enerate the Markov chain are labelled as I and II . State I generates sequences comprising S1 and S4 more frequently whereas state II generates sequences comprising
2 and S3 more frequently (each state’s symbol emission probabilities are stated below the respective state). All the state-transitions are implemented through arrows
ith their corresponding probabilities. Finally, the probability of the observable symbol sequence is the product of state-transition and symbol emission probabilities.
here, µ is the Beta distribution function given by:

(α) =

∏D−1
k=0 τ (αk)

τ (
∑D−1

k=0 αk)
, α

= (α0, α1, α2, . . . , αD−1)

(9)

τ (x) in Eq. (9) is the complete gamma function defined by

τ (x) = (x − 1)! (10)
This method can be used for various tasks like web-spam fil-
tering [24], tag recommendation [5], bug localization [25] which
involves locating potential buggy files in a software. LDA, apart
from tasks revolving topic modelling, has also been used for
annotating satellite images into various regions like residential
regions, golf courses, deserts, commercial and urban areas as
shown in [26]. The implementation for LDA is demonstrated in
Section 7.2.2.

6 Harshvardhan GM, M.K. Gourisaria, M. Pandey et al. / Computer Science Review 38 (2020) 100285

k
c
m
o
d

m
B

w
t
l

Fig. 7. Graphical plate notation for Latent Dirichlet Allocation. The grey shaded
portion signifies an observable entity.

Fig. 8. The Boltzmann machine where blue–grey nodes are hidden and maroon
nodes are visible. (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)

4. Boltzmann machines

In this section, we will be discussing about three different
inds of Boltzmann machines as 4.1 Restricted Boltzmann Ma-
hines (RBM), 4.2 Deep Belief Networks (DBNs), and 4.3 Deep Boltz-
ann machines (DBMs). Why Boltzmann machines (BMs) on their
wn are not discussed here is because BMs are impractical to
eploy due to various computational constraints.
Boltzmann machines are undirected networks composed of

any nodes linked with each other via weighted connections.
Ms represent a class of unsupervised neural networks which
Fig. 9. The restricted Boltzmann machine.

do not try to minimize a loss or achieve a target, instead, they
generate data to form a system (which usually is a probability
distribution) that closely resembles the original system. There
are certain visible and hidden nodes chosen for our convenience
where visible nodes are used as the input and output, shown in
Fig. 8. This is because after feeding the visible nodes, through con-
trastive divergence [27] which involves Gibbs’ sampling (a Monte
Carlo algorithm), the visible nodes iteratively feed the hidden
nodes through weights, and in return, the hidden nodes feed the
visible nodes. This one iteration can also be called a single Monte
Carlo Markov Chain walk as a Markov chain is generated at the
visible nodes layer.

Pragmatically, it is not easy to sample each iteration when
all the nodes are connected to every other node. Hence, the
Restricted Boltzmann Machine was proposed.

4.1. Restricted Boltzmann machine

In RBMs, connections between visible–visible and hidden–
hidden (feature detector) nodes are forbidden and hence we end
up with a structure as shown in Fig. 9.

RBMs (and BMs), in general, are energy based models [28]
where the energy of the joint configuration of visible and hidden
nodes E(v, h) is given as:

E (v, h) = −

∑
i∈visible

pivi

−

∑
j∈hidden

qjhj (11)

−

∑
i

∑
j

viwi,jhj,

where vi and hj are the states of the visible node i and hidden
node j, pi, qj are their biases and weights between them is denoted
by wi,j. The RBM makes use of the following formula to assign a
probability between each hidden and visible vector pair,

p (v, h) =
e−E(v,h)∑
v,h e−E(v,h) , (12)

here the denominator of the RHS is also called as the parti-
ion function. Contrastive divergence follows the gradient for the
earning as given by

δ log p
(
vinitial

)
δwi,j

=

⟨vinitial
i hinitial

j ⟩

− ⟨v
final
i hfinal

j ⟩

(13)

Through this gradient formula, the lowest energy state is achieved
by adjusting the weights.

RBMs have been used for collaborative filtering in the field
of recommender systems [29,30], facial recognition [31], phone
recognition [32–34] where [33] replaces each Gaussian mixture in

Harshvardhan GM, M.K. Gourisaria, M. Pandey et al. / Computer Science Review 38 (2020) 100285 7

t
w
l

d

A
w
s
c

b
t
U

d

T
s

F
i
i
{

E
i

a

A
i
t
i
d
t
t
d

4

t
a
i
r
i
t
m

H
s
o
p
t
L

a traditional spectral model with an RBM to outperform the for-
mer by modelling the joint probability distributions of the source
and target spectral features. [34] uses conditional RBMs (cRBMs)
to outperform previously made attempts at phone recognition
through HMMs, and sentiment analysis and aspect extraction [35]
among various other applications. The implementation for RBMs
is demonstrated in Section 7.1.1.

4.2. Deep belief networks

Extending the idea of RBMs further, DBNs can be called as a
network of stacked up RBMs (an RBM is a single level DBN). How-
ever, training DBNs is not very simple as there is a phenomenon
called ‘‘explaining away’’ in Bayesian networks that takes place
while inferring the hidden variables in the hidden layers as the
posterior distribution over the hidden variables is intractable.
Monte Carlo Markov Chains (MCMC) can be used to sample from
these intractable posterior distributions, however, they are very
time consuming. Explaining away occurs when one of the causes
of an effect explains the effect entirely thereby reducing the prob-
ability of other causes to be responsible. Another problem with
training DBNs is when the prior assumes independence at the
deepest hidden layer with initial randomized weights. It would
be convenient to eliminate the explaining away effect and the
independence of the prior both to train the DBNs more quickly
and efficiently.

We take a logistic belief network with stochastic binary units
[36] to generate data, where the probability of activating a unit i
is a logistic function of its immediate prior neighbours j and the
weights between them wi,j (the connections are directed to i from
j).

P (si = 1) =
1

1 + e(−bi−
∑

j sjwi,j)
(14)

The bias of unit i is given by bi. Considering the belief network
to have only one hidden layer, we can say that this hidden layer
is factorial (which means that the hidden units are conditionally
independent). However, the posterior is not independent because
of the likelihood term which comes from the input vectors fed
to the visible layer. [37] proposes that the explaining away in
the hidden layer can be eliminated by creating a complementary
prior having exactly the opposite correlations to those in the
likelihood term originating from the data. This is done so that the
product of the prior and the likelihood term yields us a factorial
posterior.

The way data is generated in an infinite belief net as shown
in Fig. 10; left panel and explained in [37] is the same as using
an RBM to generate data. Notice that the alternating connections
between hidden and visible layers with tied weights can be
reduced down to a two-layer (v, h) RBM consisting of infinite
walks of contrastive divergence. Finally, in both cases, the gen-
eration process converges at a stationary point also called as the
equilibrium point of the Markov chain. The main contribution
done by [37] was to put forward a greedy algorithm to make the
DBN learn layer-by-layer.

First we train an RBM which models the data x. Let R(c1|c0) be
he posterior over c1 where c0 is the input data vector x. What
e can achieve from this is an empirical distribution d̂1 over the

ayer c1 when we sample c0 from d̂ [38].

ˆ1
(
c1
)

=

∑
c0

d̂
(
c0
)
R
(
c1|c0

)
(15)

fter training the RBM, we insert this RBM on top of the DBN
here the number of layers is (n + 1). Thus, R(cn−1

|cn) corre-
ponds to D(cn−1

|cn) where D(.) is the posterior distribution asso-
iated with the DBN. Hence, we are effectively using R(cn−1

|cn) to
e an approximation of the posterior D
(
cn−1

|cn
)
. This eliminates

he deepest hidden layer to have an absolutely independent prior.
sing Eq. (15), we can write,

ˆn
(
cn
)

=

∑
cn−1

d̂n−1 (cn−1) R(cn|cn−1) (16)

hrough Eq. (16) the samples cn−1 with distribution d̂n−1 are
tochastically transformed to cn with distribution d̂n. We can now
sample in an unbiased manner from cn and feed it downward
stochastically by R(c i|c i−1). By doing so, all the lower hidden
units acquire an approximated posterior of data x clamped at c0.
urther, using mean-field approximation (as optionally proposed
n [37]), we can approximate posteriors D

(
c i|c0

)
by transform-

ng each individual samples c i−1
j from level i − 1 where j ∈

0, 1, . . . ,mi
− 1} as mi is the number of units in layer i. Each

sample can be transformed by their mean-field expected value
E i−1
j where,

E i
= σ (bij + W iE i−1), where (17)

σ (x) =
1

1 + e−x (18)

q. (18) is called the sigmoid function used in logistic models. W i

s the weight matrix of ith layer, bij are biases for unit j existing
in the layer i. The general equation of deep belief networks put
forward by [37] is as follows:

D
(
c i
⏐⏐ c i+1)

=

mi∏
j=1

D(c ij |c
i+1), (19)

nd

D
(
c ij = 1

⏐⏐ c i+1)
= σ

⎛⎝bij +
mi+1∑
k=1

W i
kjc

i+1
k

⎞⎠ (20)

s they are models with a powerful feature extraction abil-
ty, DBNs have been employed for a large spectrum of different
asks viz. breast cancer classification [39], time-series forecast-
ng [40], classifying audio from different sources (voice activity
etection) [41], and through convolutional DBNs [42], hyperspec-
ral spatial data classification [2], facial expression recognition
hrough boosted DBNs [1], etc. The implementation for DBNs is
emonstrated in Section 7.1.2.

.3. Deep Boltzmann machines

The main difference between DBMs [43] and DBNs is that in
he former all the connections are undirected (see Fig. 11). DBMs
re also used to capture hidden complex underlying features
n the data making it suitable for tasks like speech and object
ecognition. DBMs, as opposed to DBNs, use an approximate
nference procedure with an additional bottom-up pass initially
o accelerate learning and incorporate top-down feedback which
akes the DBM deal well with ambiguous inputs.
DBMs can also be pretrained layer-wise in a greedy fashion.

aving a DBM with 3 layers, the pretraining is done by learning a
tack of RBMs with the modification that the bottom-most vector
f inputs and the top-most layer are doubled (see Fig. 12; left
anel). This is done to respectively compensate for the scarce
op-down input on h1 and the scarce bottom-up input on h2.
astly, all the weights in the intermediate RBMs are doubled.

8 Harshvardhan GM, M.K. Gourisaria, M. Pandey et al. / Computer Science Review 38 (2020) 100285

g
b
l

Fig. 10. Hinton et al. (Left): An infinite logistic belief net having tied weights. The upward arrows are not part of the generative model as they are only used
for sampling inference from the posterior distribution at every hidden layer when the data vector is given to vo . Whereas, the downward arrows represent the
enerative model. (Right): The hybrid model with undirected connections between the top two layers representing an RBM and directed top-down connections
elow representing the generative model whereas the bottom-up connections infer a factorial representation in the layer from the layer below it. In the greedy
earning process initially the top-down and bottom-up weights are tied.
Fig. 11. (Left): Deep belief network with 3 hidden layers and two undirected roof layers. (Right): Deep Boltzmann machine with no directed connections.
These three components when composed together form a single
deep Boltzmann machine (Fig. 12; right panel). An algorithm for
the procedure may be written as:

1. Duplicate visible vector and tie W 1. Fit this RBM compris-
ing v and h to the data.

2. Freeze W 1. Use 1st layer of features h1 through P(h1
|v,

2W 1) and fit the intermediate RBM having weights vector
2W 2.

3. Freeze W 2. Use 2nd layer of features h2 through P(h2
|v,

2W 2) and fit the intermediate RBM having weights vector
2W 3.

4. Duplicate top-level RBM’s hidden vector h3 and tie W 3.
5. Utilize W 1,W 2,W 3 to compose a DBM.

The traditional process of training BMs uses random initializa-
tion to approximate gradients of the likelihood function [44] for
the input data which is not the quickest approach. To tackle
this, [43] proposed a variational technique making use of mean-
field inference to approximate expectations correlated to data
with a Markov chain based estimation procedure to estimate
the model’s expected required statistics. This procedure involves
Markov chains initializing the weights to appropriate values (as
in solving the mean-field fixed point equations for each update
in the parameters of the DBM) to facilitate joint learning of all
layers. However, this is very expensive when compared to the
pretraining of DBNs where inference is done through a single
bottom-up pass. Thus, inference of DBMs is accelerated, as pro-
posed in [45], with the use of recognition weights. The set of
recognition weights {R1,R2,R3

} are initialized to the weights{
W 1,W 2,W 3} which are obtained after the greedy pretraining

process. With an input clamped on v the recognition weights
are applied to reconstruct v = {v1, v2, v3

} of the approximating
posterior distribution which is fully factorized:

Drec h|v; µ
()

Harshvardhan GM, M.K. Gourisaria, M. Pandey et al. / Computer Science Review 38 (2020) 100285 9

a

v

v

A
d
a
t
n
m
p
t
m
b
D

F
t
l
o
d
m
s

Fig. 12. (Left): Pretraining of DBM involves individual training of stacked RBMs with the lowest and topmost layers doubled and the intermediate weights doubled.
(Right): The final structure done through composition of the weights obtained through modified pretraining process as described on the left.
d

5

p

d
i
s
a
f

Z

w
c
e

L

A
t
t
s
w
v
A
t
o
w
a
h
a

5

t
g
t

=

m1∏
p=1

m2∏
q=1

m3∏
r=1

drec(h1
p)d

rec(h2
q)d

rec(h3
r), (21)

where, drec
(
hl
i = 1

)
= vl

i for l = {1, 2, 3} and µ = {µ1, µ2, µ3
}

re the mean field parameters.
Each hidden layer is activated with a bottom-up pass by (D

denotes the number of visible units):

v1
p = σ

(
D∑

i=1

2R1
ipvi

)
, (22)

2
q = σ

⎛⎝ m1∑
p=1

2R2
pqv

1
p

⎞⎠ , (23)

3
r = σ

⎛⎝ m3∑
q=1

R3
qrv

2
q

⎞⎠ (24)

s noticed in Eqs. (22) and (23) the recognition weights are
oubled to compensate for the lack of top-down feedback (as
lso shown in Fig. 12; right panel). However, in the top layer
here is no top-down feedback, hence the recognition weights are
ot doubled. After this step, k iterations of mean-field approxi-
ation are applied which initialize at µ = v. These mean-field
arameters thus obtained are used in the training updates for
he DBM. Finally, the recognition weights are updated in such a
anner that the Kullback–Leibler divergence (defined by Eq. (7))
etween mean-field posterior Dmf (h|v; µ) and factorial posterior
rec(h|v; v) is minimized as illustrated in Eq. (25).

KL(Dmf (h|v; µ) ∥ Drec (h|v; v))

= −

∑
i

µilogvi

−

∑
i

(1 − µi) log (1 − vi)

+ C (const.)

(25)

urther on, fine-tuning of the DBM may be done discrimina-
ively (in a supervised manner) by feeding a few samples of
abelled data. DBMs have been applied on topic modelling to
utperform LDA [46], multimodal learning [47], spoken query
etection [48], state-of-the-art 3D model recognition [49,50], face
odelling [51], etc. The implementation for DBMs is demon-
trated in Section 7.1.3.
5. Variational autoencoders

In this section, we first describe what autoencoders are in 5.1
Autoencoders, and then move on to 5.2 Variational Autoencoders to
escribe how these models generate data.

.1. Autoencoders

Normal autoencoders comprise three layers (Fig. 13). The in-
ut layer, where {xi}Ni=1 ∈ X , the middle layer also known as the

coding or the bottleneck layer Z , and lastly the output layer X̂ .
Autoencoders are an unsupervised approach to learning lower

imensional feature representations from unlabelled data. The
nputs are encoded into feature extracted representations and
tored in Z through weights. Similarly, an output similar to X
t X̂ is generated after decoding of vector Z . There is a mapping
unction for encoding which may be stated as

= f (WX + b) (26)

here b is the bias and W is the vector of weights. The loss is
alculated through a simple L2 loss function at the end after one
poch,

= ∥x − x̂∥2 (27)

fter calculating the loss, the error is backpropagated through
he network and the weights are adjusted like in a normal ar-
ificial neural network. Autoencoders can be used to initialize
upervised classification models where the decoder is replaced
ith a classifier and this classifier runs on the extracted feature
ector Z to classify only based on the important encoded features.
utoencoders are mainly thought to be used for compression
asks as the cardinality of vector Z is very low as compared to that
f vector X and hence data is converted into a compressed format
ith all the important features still intact. Autoencoders however,
re used for more purposes such as collaborative filtering [52],
ashing for fast image search through binary autoencoders [53],
nd audio generation [54], etc.

.2. Variational autoencoders

In order to generate data, we must be allowed to sample from
he autoencoder model. We first assume that our data

{
xi
}N
i=1 is

enerated by a true prior latent distribution z (which is assumed
o be a Gaussian) given by p (z) where θ are the parameters of
θ

10 Harshvardhan GM, M.K. Gourisaria, M. Pandey et al. / Computer Science Review 38 (2020) 100285

o
t
T
a
o

p

T
i

p

f
p
t
b
m
l
e

Fig. 13. (Left): An autoencoder network. (Right): Training process of the autoencoder with an L2 loss function ∥x − x̂∥2 .
ur model. To generate data, we must now sample from x by the
rue conditional pθ (x | z i) and estimate the true parameters of θ .
his conditional can be represented by a neural network. Gener-
lly, for training generative models we maximize the likelihood
f training data,

θ (x) =

∫
pθ (z) pθ (x|z) dz (28)

he problem with Eq. (28) is that the conditional pθ (x|z) over the
ntegral is intractable. Moreover, the posterior density given by,

θ (z|x) =
pθ (x|z)pθ (z)

pθ (x)
(29)

is also intractable due to the denominator pθ (x) which we know
rom Eq. (28) is intractable. As a solution, we can approximate
θ (z|x) through an inference network qϕ(z|x) which allows us
o derive a tractable lower bound which can be maximized
y proper optimization. Fig. 14 describes this new probabilistic
odel where pθ (x|z) may be called the generator network. The

ogarithm of the data likelihood can then be expressed as the
xpectation E with respect to z sampled from qϕ

(
z|xi

)
.

log pθ

(
xi
)

(30)

= Ez∼qϕ (z|xi)
[
log pθ

(
xi
)]

pθ

(
xi
)
is independent of z

= Ez

[
log

pθ (xi|z)pθ (z)
pθ (z|xi)

]
,

from Bayes’ rule

(31)

Multiplying with a constant, we get,

Ez

[
log

pθ (xi|z)pθ (z)
pθ (z|xi)

qϕ(z|xi)
qϕ(z|xi)

]
(32)

= Ez
[
log pθ (xi|z)

]
− Ez

[
log

qϕ

(
z|xi

)
pθ (z)

]

+ Ez

[
log

qϕ(z|xi)
i

] (33)
pθ (z|x)
= Ez
[
log pθ (xi|z)

]
− KL(qϕ(z|xi) ∥ pθ (z))
+ KL(qϕ(z|xi) ∥ pθ

(
z|xi

)
)

(34)

As we can see, in Eq. (34), term III comprises pθ (z|xi) which we
know is intractable. However, we also know that the KL diver-
gence is always ≥ 0 which is useful for optimizing the likelihood.
Also, term I can be estimated by sampling that is differentiable
when we use the reparameterization trick described in [55], term
II is composed of two Gaussians and their KL divergence gives us
a closed-form solution. To maximize the likelihood we have to
maximize I and minimize II. Term I describes the reconstruction
of input data which requires the expectation to be high (or
reconstruct the data very well), whereas term II needs to be
minimized, which essentially means the posterior distribution
must be as similar as possible to the prior, as by doing this, the
Kullback–Leibler divergence is minimized.

We define a tractable lower bound (because term III is ≥ 0),
ε
(
xi, θ, ϕ

)
whose gradient can be acquired and optimized,

ε
(
xi, θ, ϕ

)
(35)

= Ez
[
log pθ (xi|z)

]
−KL(qϕ(z|xi) ∥ pθ (z))

Therefore, we get a variational lower bound,

ε
(
xi, θ, ϕ

)
≤ log pθ

(
xi
)

(36)

While training, we attempt to estimate the parameters θ ′ and ϕ′

by maximizing ε(xi, θ, ϕ) as

θ ′, ϕ′
= argmax

θ,ϕ

N∑
i=1

ε(xi, θ, ϕ) (37)

Fig. 15 shows the entire variational autoencoder network.
VAEs have been used for trajectory prediction from static

images [56], collaborative filtering [57], recreation of music [58],
modelling frame-wise spectral envelopes in speech processing
[59], speech emotion classification [60], molecule generation [61],
etc. Later, in Section 7.1.4, we demonstrate how CVAEs (Con-
volutional Variational Autoencoders) can be applied to generate
artificial images from a base distribution of similar images.

Harshvardhan GM, M.K. Gourisaria, M. Pandey et al. / Computer Science Review 38 (2020) 100285 11

t
g

Fig. 14. (Left): The inference network represented by qϕ (z|x) which outputs mean and diagonal covariance vectors of z|x from which we sample z|x. (Right): The
generator network (or decoder) represented by pθ (x|z) which also output the mean and diagonal covariance vectors of x|z from which the distribution x|z can be
sampled.
Fig. 15. The Variational Autoencoder (VAE) when all the parts are pieced
ogether. From the bottom-up, it comprises of the inference network and the
enerator network which gives us the output X̂ .

6. Generative adversarial networks

VAEs generate data similar to the original data to an extent,
however, they are not the most accurate. In the case of generating
images, one can notice blurriness in the generated images. This is
overcome by GANs [62], proposed by Goodfellow et al. (2014),
which are the most recent addition to the modern generative
models and also achieve high accuracy in generating data. GANs
offer a solution of training generative models without the usual
procedure of maximizing a log likelihood (as we saw earlier
with VAEs) which are usually intractable and required numerous
approximations. Neither do GANs require any Markov chains, as
in the case of Boltzmann machines.

In this section, we shall first discuss GANs and the basic
building blocks that they comprise along with their ideology
of operation. Then, we discuss some of the most relevant and
popular derivatives of GANs (although, in practice, there are
literally more than a thousand derivatives invented so far) viz.
6.1 Deep Convolutional GANs (DCGANs), 6.2 Fully Connected and
Convolutional GANs (FCC-GANs), 6.3 Conditional GANs (CGANs), 6.4
Stack GANs (SGAN).

GANs have two components namely the discriminator and the
generator. Both these components work in tandem (contrary to
the term ‘adversarial’ — which gives the idea of a competitive
environment) and learn features together rather than one of them
being pretrained. Fig. 16 describes the whole training process and
the ideology of operation in a pedagogical manner.

Formally, let us denote the distribution of generator G by pG
over genuine data x. We define a prior of input noise (latent
random variable) pz (z). Note that G is a differentiable function as
it operates on non-discrete data z with parameters θG whose data
space is represented by GθG (z). Similarly, we represent the dis-
criminator D’s data space as DθD (x) having parameters θD which
is the probability that the data came from genuine data x and is
not fake (that is, not from pG). One can think of D as a simple
Convolutional Neural Network (CNN) which discriminates be-
tween real and fake images and outputs softmax probabilities
between 0 and 1 regarding whether the data is real or fake. The
general equation of GANs is given by a value function f (G,D) or
a minimax objective function given by:

min
θG

min
θD

f (D,G)

= Ex∼pdata(x) logDθD (x)
+ Ez∼pz (z) log(1
− DθD (GθG (z)))

(38)

DθD tends to maximize objective by increasing DθD (x) ≈ 1 and
decreasing DθD (GθG (z)) ≈ 0, while on the other hand, GθG tends
to minimize objective by increasing DθD (GθG (z)) ≈ 1. In other
words, D attempts to discriminate more properly between real
and fake data, and conversely, G attempts to make D output
higher values close to 1 for generated data in order to fool D. This
minimax game terminates at a ‘‘saddle point’’ (the Nash equilib-
rium) where f (D,G) is minimum with respect to G’s strategy and
maximum with respect to D’s strategy. The Nash equilibrium is a
solution concept in game theory which involves two players com-
peting each other (non-cooperative) where each player knows the
equilibrium strategies of other players, with the given constraint

12 Harshvardhan GM, M.K. Gourisaria, M. Pandey et al. / Computer Science Review 38 (2020) 100285

i
b
g

t
o
s

a

E
s

b
T
D
l
l

m
=

T
t
p
b
d

6

t
t
e
m

o
f
w
c
T

Fig. 16. Generative adversarial network. The working procedure is as follows: Step 0: The discriminator D (a multilayer perceptron (MLP)) is trained first by feeding
it real images. Step 1: The error is backpropagated through D and its weights are adjusted. Step 2: D is trained further by feeding it some random primitive stage
generations by generator G (note that G takes noise input and is also an MLP). Step 3: D outputs values close to 0 because of pretraining of real images. Step 4:
The output of D is subtracted by 1 (to train G appropriately) and backpropagated through G and its weights are adjusted. Further, G generates images with noise
nput again with readjusted weights, resulting in more realistic looking images. These images are fed to D along with real images and we get outputs which are
ackpropagated through D so it can better discriminate next time. The outputs for fake images are also backpropagated through G for the betterment of quality of
enerated images. These steps are repeated for many epochs until D cannot discriminate between generated and real images.
(
c
i

t
w
o

n
s
n
a
t
t
a
w
s

r
(
m
s
r
r
a
p
e
d
a
r
i
i

6

a
l
d
t

l

hat no player can reach their equilibrium by changing only their
wn strategy. Further, the training of GANs alternates between k
teps of optimizing D and one step of optimizing G as follows:

DGradAsc

= argmax
θD

[Ex∼pdata(x) logDθD (x)

+ Ez∼pz (z) log(1 − DθD (GθG (z)))],

(39)

nd,

GGradDesc

= argmin
θG

[Ez∼pz (z) log(1

− DθD (GθG (z)))]

(40)

q. (39) describes the gradient ascent on D while Eq. (40) de-
cribes the gradient descent on G.
However, as reported in [62], in practice, initially it may

e difficult to train GANs due to insufficient gradient for G.
his happens because initially when G is weak, it is easy for
to detect generated data with high confidence thus making

og(1 − DθD (GθG (z))) saturate. Instead, we choose to maximize
ogDθD (GθG (z)),

inLog (41)
argmax

θG

[Ez∼pz (z) logDθD (GθG (z))]

his deals with the problem of a flat gradient early on in the
raining for G by increasing the gradient which helps G to train
roperly. Intuitively, this modification serves the same purpose as
efore when G was tending to minimize the objective. We now
iscuss a few major contributions done on the field of GANs.

.1. Deep convolutional GANs (DCGAN)

DCGANs [63] were proposed with some structural changes to
he original GANs which were unstable to train in the sense that
he network could collapse after certain epochs, where the gen-
rator produced nonsensical outputs. There were five significant
odifications done, which we shall discuss now.
The first change was to use only convolutional layers, instead

f the traditional alternating convolution and max-pooling layers
ollowed by full connection with ANNs. This was inspired by [65]
hich found that a convolutional layer with augmented stride
an replace a max-pooling layer without any loss in accuracy.
his allowed the generator to learn its own spatial upsampling
through transposed convolutional layers or fractionally strided
onvolutional layers) and similarly for the discriminator to learn
ts own spatial downsampling.

Secondly, the full connection on top of the highest convolu-
ional features was eliminated. The highest convolutional features
ere connected to the input of the generator and the output
f the discriminator. Generator G takes a noise distribution z

as input which can be called a full connection (because it is
only a matrix multiplication) and as for discriminator D, the last
convolutional layer is flattened to be fed into a single sigmoid
output. Fig. 17 sheds light on the DCGAN architecture of G.

The third change was to use batch normalization in both
etworks (except for the G output layer and D input layer to avoid
ample oscillation and model instability). Batch normalization
ormalizes data to have zero mean and unit variance, which
verts training problems arising from poor initialization and helps
o have strong gradients in deep networks. This change showed
hat G could initially learn better with stronger gradients and also
voided it to collapse later on where all the generated samples
ould be the same and not make any sense (however, this can
till happen with DCGANs demonstrated in Fig. 18).
The fourth and fifth changes made respectively were to use

ectified linear unit (reLU) as activation function [66] for the G
except the final layer which had tanh activation, allowing the
odel to learn quicker to convergence and utilize the whole
pectrum of the colours from the training data) and to use leaky
eLU [67,68] for D for higher resolution modelling which incorpo-
ates a negative slope in the negative domain of the function to
chieve better results in neural networks. Fig. 19 shows the com-
arison between reLU and leaky reLU (left panel) along with an
xample of a DCGAN generated image sample as compared to real
ata (right panel). DCGANs have been used for CNN-based im-
ge recognition [69], automatic sketch colourization [70], gesture
ecognition [71], object regeneration [72], infrared image colour-
zation [73], etc. The implementation for DCGANs is demonstrated
n Section 7.1.5.

.2. Fully connected and convolutional GANs (FCC-GAN)

[74] puts forward a fully connected and convolutional GAN
nd argues that having full connection along with max pooling
ayers in both components of the GAN can outperform the tra-
itional DCGANs. FCC-GAN demonstrates improvement over the
raditional DCGAN in sample quality, learning speed and stability.

The strided convolution layers in D are replaced by pooling
ayers having unit stride convolution (Fig. 21).

Harshvardhan GM, M.K. Gourisaria, M. Pandey et al. / Computer Science Review 38 (2020) 100285 13
Fig. 17. Radford et al. The generator of DCGAN with four sequential fractionally strided convolutional layers.
Fig. 18. Collapse of a DCGAN to a single point, particularly visible after 12 epochs with certain parameters on the 32 × 32 CIFAR-10 [64] dataset.
Fig. 19. (Left): Rectified Linear Unit (reLU) activation function on the left and leaky reLU on the right. (Right): DCGAN generated samples after 11 epochs on 32 × 32
CIFAR-10 dataset on the left and real samples on the right.
The FC network of the generator maps noise to intermediate
image features which has many advantages. It allows learning of
essential non-spatial mapping from the noise vector to intermedi-
ate features. It also captures the underlying relationship between
different noise vectors that should be mapped to similar features
of the same class of images. Finally, it solves the problem of
shared weights in the DCGAN architecture which did not allow
the generation of slight variations with respect to different spatial
zones in the same convolution filter, thus giving more realistic
results. The problem with the discriminator of the DCGAN is that
it extracts high dimensional features from an input image which
makes it easier to make a decision boundary between real and
fake. This implies that the discriminator loss converges quickly
to small values. If D becomes too powerful as compared to G,
then the learning gradients for G would become too weak or flat
and may even vanish completely. Secondly, the distance between
the decision boundary and category regions in high dimensional
space may be high, and thus the gradients may point to random

directions which is not appropriate to train G. FCC-GANs solve
the above problems by reducing the high dimensional features
to lower dimensions, thus bringing the decision boundary closer
to category regions, and since it is harder to build the decision
boundary in lower dimensions, D cannot easily discriminate be-
tween real and fake data points. This in turn slows down the
convergence rate.

Finally, the last advantage of FCC-GAN over traditional DC-
GANs is the average pooling in D which boosts performance and
acts as a regularization in feature extraction process which is very
useful in deep fully connected networks. Fig. 20 shows results
of DCGAN (denoted by conventional CNN), FCC-GAN-S (strided
convolution), and FCC-GAN-P (pooling).

6.3. Conditional GANs (CGAN)

CGANs [75] provide a control over the data being generated
by conditioning it on additional data (which could be class labels

or associated data from a different modality). Let this additional

14 Harshvardhan GM, M.K. Gourisaria, M. Pandey et al. / Computer Science Review 38 (2020) 100285

d
3

d

Fig. 20. Barua et al. Image generation performance on 32 ×32 CIFAR-10 image
ataset, compared between CNN, FCC-GAN-S and FCC-GAN-P after 1 epoch (a–c),
5 epochs (d–f), and 150 epochs (g–i).

ata be denoted by y. We feed y to both G and D to condition
them both as shown in Fig. 22. The general equation of CGANs is
as follows:

min
θG

max
θD

f (D,G)

= Ex∼pdata(x) logDθD (x|y) (42)
+E log(1
z∼pz (z)
Fig. 22. Mirza et al. The conditional generative adversarial network with
additional data y, ground truth data x and latent hidden noise vector z .

−DθD (GθG (z|y)))

CGANs have been used for many purposes such as face gener-
ation [76], transforming face by age [77], removal of rain from
images [78], speech enhancement [79], classifying spoken lan-
guage [80], however, they do not promise to always outperform
their non-conditional counterparts. With hyperparameter tuning
and changes to the architecture it may be possible to do so, yet
CGANs on their own are not always more efficient.

6.4. Stack GANs (SGAN)

Stacked GANs [81] comprise stacks of top-down generators,
each of which generate lower level representations while being
Fig. 21. Barua et al. (a) The FCC-GAN discriminator having multiple deep fully connected layers mapping high dimensional features extracted by convolutional layers
to a lower dimensional space before max pooling with unit stride convolution, and (b) the FCC-GAN generator having multiple deep fully connected layers before
convolutional layers to convert low dimensional noise distribution to a high dimensional representation of features of an image.

Harshvardhan GM, M.K. Gourisaria, M. Pandey et al. / Computer Science Review 38 (2020) 100285 15

G
i
f
T
l

ω

w
t
s
m
t
g
w

ω

E

[

C
G
h
s
T
l
E
t
d

[

conditioned on corresponding higher level representations of the
data. Similarly, in a bottom-up manner, a series of deep neural
networks (DNNs) are connected which form the encoder. The
adversarial lossωadv is introduced which is given by each of the
intermediate representations of the units (DNNs) in the encoder
which forces these intermediate representations to lie on the
manifold of the DNN’s representation space. There are two more
types of losses, namely, conditional lossωcond and entropy lossωent .
Conditional loss arises due to the conditional nature of the gen-
erators used which are conditioned on class labels y with noise
input z which forces the generators to better utilize the high
level conditional information. Entropy loss forces the generators
to make the generated representations more varied and diverse.
Fig. 23 shows the architecture of SGAN in its entirety.

The encoder E is pretrained initially for classification. Let there
be a stack of bottom up deterministic non-linear mappings hi+1 =

Ei(hi), i ∈ {0, 1, . . . ,N − 1} where N is the total number of stacks
and hi (i ̸= 0,N} are the intermediate representations between
each encoding unit (it is worthy of mention that h0 = x (original
data) and hN = y which are the predictions). Ei refers to the
ith unit of E which is made up of neural network layers like
convolutions, pooling, etc.

Each Gi then takes the higher level feature and the noise vector
to produce a lower level feature ĥi. As described in Fig. 23, the
generators Gi, whose function is to invert a bottom-up mapping
of the corresponding Ei, is trained independently first with the
conditional input provided by E as ĥi = Gi (hi+1, zi), and then
jointly when each Gi (except the top-most, which takes input
from the prediction y) gets input from upper generators as ĥi =

i(ĥi+1, zi). All of the loss functions described henceforth are for
ndependent training which can be represented the same way
or joint training by replacing hi+1 with ĥi+1 wherever applicable.
he total loss is calculated as the linear combination of the three
osses described earlier for each Gi as:

Gi = C1ω
adv
Gi + C2ω

cond
Gi (43)

+ C3ω
ent
Gi ,

here C1, C2 and C3 are the weights corresponding to each of
he respective losses, however, these weights are not learnt. [81]
pecifies that in practical use, these weights are set in such a
agnitude that all the losses fall in similar scales. For each Gi

here exists a corresponding discriminator Di that judges the
enerated sample ĥi based on real representations given by hi
hose loss function may be given as:

Di = Ehi∼Pdata,E [− logDi (hi)]

+ Ezi∼Pzi , hi+1∼Pdata,E[− log(1 (44)

− Di(Gi (hi+1, zi)))]

ach Gi’s adversarial loss is given by the equation,

ωadv
Gi

= Ehi+1∼Pdata,E, zi∼Pzi
− log(Di(Gi (hi+1, zi)))]

(45)

onditional loss ωcond serves the purpose of preventing generators
i to generate data from the lower level representation inputs

ˆ i by completely ignoring high level representations hi+1, which
hould not be the case as Gi is supposed to be conditioned on hi+1.
his is a form of regularization applied on Gi. The generated low-
evel distributions ĥi are fed back to corresponding encoder unit
i to compute recovered higher-level representations. ωcond is used
o force these recovered representations to be close (in Euclidean
istance defined by f) to conditional representations as,

ωcond
Gi

= Ehi+1∼Pdata,E, zi∼Pzi
(46)
f (Ei (Gi (hi+1, zi)) , hi+1)]
Another problem that arises with conditional loss is that Gi tends
to ignore the latent noise distribution z while determining ĥi con-
ditioned on hi+1. To solve this, it is necessary that the generated
representations ĥi be sufficiently diverse being conditioned on
hi+1 given by the conditional entropy function H(ĥi|hi+1). Higher
entropy means higher diversity, thus desirably one would want
to maximize H , but it is intractable. [81] proposes a variational
lower bound on H where an auxiliary distribution Qi(zi|ĥi) is used
to approximate the true posterior Pi(zi|ĥi) through the entropy
loss ωent

Gi
given by,

ωent
Gi

= Ezi∼Pzi
E
ĥi∼Gi

(
ĥi|zi

)
[− logQi(zi|ĥi)]

(47)

ωent
Gi

is minimized to maximize the variational lower bound for
H(ĥi|hi+1). Qi is a DNN that estimates the posterior distribution
zi conditioned on ĥi which estimates only the posterior mean
(which is treated to be a diagonal Gaussian distribution) which
implies that ωent

Gi
becomes similar to a Euclidean reconstruction

error. Gi and Qi are updated in each iteration to minimize ωent
Gi

.
One thing to note is that Gi of the SGAN generate distributions

conditioned on class labels y as,

PG
(
x̂|y
)

= PG
(
ĥ0|ĥN

)
∝ PG(ĥ0, ĥ1, . . . , ĥN−1

⏐⏐⏐ ĥN)

=

N−1∏
i=0

PGi
(
ĥi
⏐⏐ĥi+1

) (48)

SGAN factorizes H(x) into smaller conditional entropy terms,

H (x) = H (h0, h1, . . . , hN)

=

N−1∑
i=0

H (hi|hi+1) + H (y)
(49)

SGANs achieve higher sample quality than the traditional DC-
GANs with either independent or joint training separately. Fig. 24
shows some SGAN generated images.

7. Analysis and discussion

Table 13, given later, describes the fields in which all the mod-
els discussed in this paper are used in. However, while putting
together this survey, we noticed that there are common fields
amongst two entirely different models that they are applied on.
For example, we have seen that LDA is mainly meant for topic
modelling, and still, DBNs have outperformed LDA in the same
field [46]. We saw that HMMs were good for pattern recogni-
tion like the case of speech recognition, which was also done
effectively by VAEs [60]. Virtually, one may think that any of the
generative models can be applied in some form to tackle all the
problems that specific classes of generative models usually do.

Having mentioned that, it is still useful to apply only a certain
and relevant class of generative models for a specific problem
for better efficiency of problem solving, simplicity of model de-
sign (in the sense that one should not arbitrarily throw a deep
generative network with many layers at data which does not
require feature extraction at various levels for better learning),
for better cost minimization, among various other reasons. In this
section, we analyse all the generative models discussed thus far
to give the reader a better understanding of the advantages and

16 Harshvardhan GM, M.K. Gourisaria, M. Pandey et al. / Computer Science Review 38 (2020) 100285
Fig. 23. Huang et al. Stack GAN model. (a) The training procedure where each generator Gi is trained individually conditioned on the input given by the encoder
and then jointly when receiving input from other upper generators. (b) While testing, x̂ is the final generated data which is a result of stacked top-down generators
sequentially generating features one-by-one.
Fig. 24. Huang et al. Left: (a) SGAN samples conditioned on class labels, (b) ground truth (real) images from MNIST dataset. Right (a) SGAN samples on conditioned
on class labels, (b) ground truth (real) images from SVHN dataset.
disadvantages of all the models for any given problem. Addition-
ally, we implement the discussed models on suitable datasets to
demonstrate experimental analyses.

Following are the sub-sections: 7.1 Analysis of Deep Genera-
tive Models, 7.2 Analysis of pure ML-based Generative Models, 7.3
Comparisons, 7.4 Difficulty of Analysing Generated Samples and 7.5
Future Directions.
7.1. Analysis of deep generative models

Deep generative models can be classified as whether they
perform explicit density estimation of Pdata(x) or implicit. Ex-
plicit density estimation simply means defining and solving for
Pmodel(x), whereas implicit density estimation refers to learning a
model that can sample from Pmodel (x) without explicitly defining
it. Fig. 25 describes the flowchart of deep generative models based
on the tractabilities of their density distributions where NADE

Harshvardhan GM, M.K. Gourisaria, M. Pandey et al. / Computer Science Review 38 (2020) 100285 17

s
M
e
o
G
d
a
c
t
i
t

t
d
o
M
d

P

Fig. 25. Adapted from Goodfellow et al. [82], the taxonomy of generative models based on the tractability of their density distribution.
M
s
p
t
L

−

A
f
1

=

tands for Neural Autoregressive Distribution Estimation [83],
ADE for Masked Autoencoders Distribution Estimation [84], Pix-
lRNN for Pixel Recurrent Neural Networks [85] which is a type
f fully visible deep belief network (FVBN) [86,87], and GSN for
enerative Stochastic Networks [88]. The problem with explicit
ensity models is capturing all the complexities in a given data
nd simultaneously not losing tractability. To tackle this, FVBNs
onsider careful construction of the model which guarantees
ractability, and on the other hand, explicit models that approx-
mate density like VAEs incorporate tractable approximations in
he likelihood and its gradients.

We further describe all the explicit density models having
ractable density distributions listed in Fig. 25, which the paper
oes not formally address, in brief. FVBNs use the chain rule
f probability to decompose a probability distribution over an
dimensional vector x, giving us a product of 1-D probability

istributions as,

model (x)

=

M∏
k=1

Pmodel(xk|x1, . . . , xk−1)
(50)

The order of generating a sample in FVBNs is O(n) because each
sample has to be generated sequentially as x1, then x2 and so
on. The advantage that GANs have over FVBNs is in the respect
that all the samples are generated in parallel yielding a very high
generator speed.

NADE, similar to FVBNs, assume that a product of 1D distri-
butions represent a factorized M dimensional distribution p(x) in
any order o, or permutation of integers ∈ [1,M],

p (x) =

M∏
m=1

p(xom |xo<m) (51)

where o<m represent dimensions ∈ [1,m − 1] and xo<m is the
corresponding set of dimensions (a subvector) in the order o.
NADE specifies a parameterization of all these M conditionals
p(xom |xo<m) using a feed-forward multilayer perceptron given by,

p
(
xom = 1|xo<m

)
(52)
= sigm(V om , hm + yom)
hm = sigm(W o<mxo<m + z) (53)

where sigm(x) is the logistic sigmoid function defined by sigm (x)
= 1/(1 + e−x) with a total of H hidden units, V ∈ RM×H ,
y ∈ RM , W ∈ RH×M , z ∈ RH , which are the parameters of
NADE. As the hidden layer matrix W and bias z are shared among
all hidden layers hm, NADE features parameters of the order
O(HM) as opposed to O(HM2) as in the case of individual neural
networks. Training of NADE can be done through minimization
of the average negative log-likelihood or by maximum likelihood
through SGD (stochastic gradient descent),

1
N

N∑
n=1

− log p
(
x(n))

=
1
N

N∑
n=1

M∑
m=1

− log p(x(n)
om |x(n)

o<m
)

(54)

ADEs are modified autoencoders which satisfy the autoregres-
ive property, which is referred as such because of the sequential
rediction (regression of) each dimension of x while computing
he negative log-likelihood which we define below by Eq. (56).
et l(x) denote the binary cross-entropy loss function given by,

l (x)

=

M∑
m=1

[−xom log x̂om(
1 − xom

)
log(1 − x̂om)]

(55)

s before, we define p
(
xom = 1|xo<m

)
= x̂om , along with the

undamental rule of probability that implies p
(
xom = 0|xo<d

)
=

− x̂om we transform Eq. (55) into a negative log-likelihood,

− log p (x)

=

M∑
m=1

− log p(xom |xo<m)

M∑
m=1

[−xom log p
(
xom = 1|xo<m

)
()

(56)
− 1 − xom log p(xom = 0|xo<m)]

18 Harshvardhan GM, M.K. Gourisaria, M. Pandey et al. / Computer Science Review 38 (2020) 100285

N
t

h

x

w
c
t
t
b

w
a
s

e
m
d
e
t
u
u
d
d
f

t
a
c
l

ε

T
p
g
t
t
l
h
a
t
q
a
g

e

t

Fig. 26. Autoregressive LSTM-based image modelling.

ow, given an autoencoder with hidden representation h(x) ob-
aining a compressed reconstruction x̂ defined by,

(x) = f (b + Wx) (57)

ˆ = sigm(a + Vh (x)) (58)

here a, b are vectors and W and V are matrices representing
onnections from input-to-hidden and hidden-to-output respec-
ively, with f as a non-linear activation function. Transforming
his simple autoencoder to satisfy autoregressiveness can be done
y knowing that since any outputs x̂om depend upon subvec-

tor xo<m , there is no computational waypoint between x̂om and
xom , . . . , xoM . Hence, it can be said that at least one of these
paths represented by matrices W or V equals to null. To nul-
lify connections, a binary mask matrix is applied element-wise
and multiplied, the values of which are 0 for the entries that
correspond to paths that are null (or non-existent). Using the
autoencoder defined by Eqs. (57) and (58),

h (x) = f (b +
(
W ⊙ KW) x) (59)

x̂ = sigm(a +
(
V ⊙ KV) h (x)) (60)

here KW and KV are defined to be the masks for matrices W
nd V respectively which help in transforming the autoencoder
atisfy the autoregressive property.
PixelRNN is another neural autoregressive model which mod-

ls distributions over pixel values which optimizes weights by
aximization of likelihood. Given the fragmentation of a joint
istribution p(x) defined by Eq. (50), each conditional is consid-
red a multinomial and parameterized through a softmax ac-
ivation layer. Long Short-Term Memory (LSTM) networks are
sed to model the product of the conditionals (which are also
sed in recurrent neural networks, RNNs) to learn long-term
ependencies between pixels. For a given pixel, the contextual
ependencies are learned by iterating the images row by row
rom top to bottom demonstrated by Fig. 26.

Explicit density estimation models which require approxima-
ions provide an intractable explicit density function which needs
pproximations to maximize likelihood. VAEs are the variational
ategorization of approximating density models. In general, the
ower bound in variational methods is given by,

(x; θ) ≤ log Pmodel(x; θ) (61)

he problem with VAEs is that when a weak approximation of the
osterior distribution or prior distribution is used, no matter how
ood the optimization of the parameters or how big and diverse
he dataset, distance between ε and the true likelihood can make
he distribution Pmodel be not similar to Pdata at all; the model can
earn an undesired distribution. Variational methods obtain a very
igh likelihood but still fail to generate samples of quality as high
s that of GANs, and when compared to FVBNs, they are difficult
o optimize. Generative models often are evaluated based on the
uality of samples they produce which is a subjective opinion
nd not an empirical fact (we discuss more about evaluation of
enerative models later in this section).
The other class of generative models which estimate density

xplicitly by approximation are BMs which use Markov chains to
Table 1
Configuration settings for training the RBM.
visible nodes # hidden nodes # epochs Batch size

1682 100 10 100

Fig. 27. Reconstruction RMSE loss encountered per epoch while training the
RBM.

do so. Samples are drawn, x◦

∼ T (x◦

|x) repeatedly which simul-
aneously update x by the transition function T which makes the
distribution x eventually converge to be a sample from Pmodel(x).
Running the Markov chain until it converges is also referred to
as burning in the Markov chain in literature. However, achieving
this convergence is not simple. In literature, the number of steps
the Markov chain must run before reaching equilibrium is called
the mixing time. There is no proper theory regarding predicting
when a Markov chain will reach convergence, although it is clear
that it definitely will converge at some point. This is the reason
why usually Markov chains, wherever used, are made to run for
a sufficient amount of time so one can say that it has roughly
converged. Mixing time can be very long and thus in practice, x
is put to use a long time before it can actually converge to be
a sample from Pmodel. Also, efficiency of Markov chains in higher
dimensions diminishes. BMs, more specifically DBNs brought the
focus back on deep learning when the official DBN paper was
released, however, BMs altogether have lost relevance and are
moving along the downward curve in terms of popularity. The
reason for this could be that the MC approximation techniques
fail to outperform their supervised, directed graph model-centric
counterparts in terms of accuracy, and another could be the high
cost associated with burning in MCs.

Finally, the implicit density models positioned on the right
branch of the taxonomy interact indirectly with Pmodel while train-
ing by sampling from it. This sampling can be done directly as
in the case of GANs, or a Markov chain could be run several
times before reaching convergence which translates to sampling
from Pmodel itself, an example of which is the GSN. However, as
discussed earlier, burning in Markov chains is cost intensive and
GANs are better in those regards. Moreover, GANs can generate
samples in parallel when put in comparison against FVBNs which
only generate samples one by one. There are no difficult approx-
imations of intractable probabilistic computations in maximum
likelihood estimation, and, the added advantage GANs possess is
better sample quality. Yet, GANs come with their own disadvan-
tages; they are difficult to optimize and are very susceptible to
collapsing as discussed in Section 6. Section 7.4 also discusses the
difficulty in properly analysing whether the GAN has overfit or
underfit the training data.

Harshvardhan GM, M.K. Gourisaria, M. Pandey et al. / Computer Science Review 38 (2020) 100285 19

p
w
a
f
r
d
f
t
i
d

R

W
f
f
l

7

Table 2
DBN configuration settings.
Hidden layer
structure

Batch size Learning rate
(RBM)

epochs Activation
function

{256, 512} 10 0.06 20 Sigmoid

7.1.1. Implementation of Restricted Boltzmann Machine1
For this experiment, we demonstrate how RBMs can be used

as recommender systems by generation of a set of recommended
movie titles for a particular user given their past history of
movies that they liked or disliked. We use the MovieLens ml-100k
dataset [90] as our training data. The data comprises 100000
ratings of 943 users (in rows) on 1682 movies (in columns).
The ratings fall in the range of 1∼5 which, at the time of pre-
rocessing, was binarized so that if the rating was over 3, it
ould be replaced by a 1, otherwise a 0. The data is binarized
s RBMs generally are trained on binary data and are suitable
or such cases. The data is fed to the visible layer of the RBM
ow-wise during training which then goes through contrastive
ivergence stochastically and a regenerated output is acquired
rom the visible layer. The regenerated outputs are compared to
he original ratings of the users and the model’s performance
s evaluated based on RMSE metrics (root mean square error)
efined as,

MSE =

√
1
N

∑
u,i∈N

(rui − r̂ui)2 (62)

In Eq. (62), u denotes a user, i denotes a movie, rui denotes the
rating of user u on movie i, r̂ui denotes user u’s predicted rating
on movie i and N is the number of movies. The configuration
of the network is as follows: the number of visible layers is
set to be equal to N (which, in our case, is 1682). This is done
so that the input layer can assign one node to each individual
rating made by the user for every movie. Obviously, each user
cannot rate all 1682 movies and hence these nodes receive a -1
instead of 0. During training, the negative values are frozen and
hence these values are not trained. The configuration settings for
RBM training are listed in Table 1. After training, we acquire the
reconstruction loss per each epoch as illustrated by Fig. 27 and
attain a satisfactory loss on the test set of 0.2439 based on RMSE.
Hence, we may conclude that RBMs can be used as recommender
systems.

7.1.2. Implementation of deep belief network
In the previous subsection we demonstrated how RBMs can

be used for generating data close to the original distribution
when applied as recommender systems. Here, we use DBNs for
feature extraction and pipeline a logistic regression model after
extracting features to classify a dataset of digits [91] ranging
from 0 to 9. We compare results of classification when logistic
regression is applied on raw pixel data versus when the features
are extracted from the same data using DBN followed by the
application of logistic regression. The dataset is augmented 5-
fold by shifting the 8 × 8 images 1 px (single pixel) to the left,
right, down and up followed by splitting of data into training
and testing set of proportions 8:2. The DBN was constructed with
specifications provided by Table 2, where {256, 512} implies that
the first hidden layer comprises 256 nodes and the second 512
nodes. As mentioned earlier in Section 4.2 the training of DBNs
is done by initially training an RBM followed by its insertion at
the top of the DBN to eliminate independence of the prior at the
top-most layer.

1 All source code for each implementation further on is provided in [89].
 a
Fig. 28. RBM pre-training reconstruction error at each epoch.

Fig. 29. Metrics precision, recall and F1 score for each of the digit classes as
classified by a logistic regressor on DBN extracted features.

Table 3
Configuration settings for training of DBM in MNIST digit recognition dataset.
Dimensions # epochs Learning rate Batch size

{784, 500, 784} 2 0.01 5

It is observed after our experiments that feature extraction us-
ing DBNs yields superior classification performance as compared
to classification without feature extraction. Reconstruction error
of the RBM by training on 20 epochs is illustrated by Fig. 28. The
evaluation metrics for evaluation of both approaches we use are
namely precision, recall, and F1 score. Precision is defined as the
ratio of positive observations that the model correctly predicted
to the total number of predicted positive observations. Recall
(also referred to as sensitivity) is the ratio of positive observations
that the model correctly predicted to all the observations in
the actual class of ‘positive’. Finally, F1-score is defined as the
weighted average of both precision and recall. Mathematically,

Precision = TP/TP+FN (63)

Recall = TP/TP+FN (64)

F1 Score =
2(Recall ∗ Precision)
(Recall + Precision)

(65)

e illustrate the results in terms of the above metrics by Fig. 29
or classification by feature selection using DBNs and by Fig. 30
or classification without feature selection (in both cases, using
ogistic regression).

.1.3. Implementation of Deep Boltzmann Machine
We saw how RBMs can be applied as recommender systems

nd how DBNs may be used as powerful feature extractors. In

20 Harshvardhan GM, M.K. Gourisaria, M. Pandey et al. / Computer Science Review 38 (2020) 100285

t
t

g
t
D
d
s
r
m
w
e
t
2
l
i
t
u

Fig. 30. Metrics precision, recall and F1 score for each of the digit classes as clas-
sified by a logistic regressor on raw pixel-value data without feature selection.
Clearly, these values are diminished due to absence of feature selection.

Fig. 31. Regenerated samples of MNIST digit recognition dataset by DBM-based
feature selection and plotting.

this implementation, we demonstrate how DBMs can be used to
regenerate data in form of images by taking the popular MNIST
dataset of digits [92]. Once the data is imported, the pixel values,
ranging from 0∼255 are divided by 255 for normalization pur-
poses, scaling all pixel values to lie in [0, 1]. The configuration
settings used for the training of the DBM is given by Table 3.
The generated samples are illustrated by Fig. 31. The dimensions
{784, 500, 784} refer to the consecutive enumeration of visible
and hidden layers separated by commas. We notice that DBMs
can reconstruct simple image data such as the MNIST dataset to
a decent extent of good sample quality.

7.1.4. Implementation of variational autoencoder
In Convolutional Variational Autoencoders (CVAEs), the en-

coder and decoder networks comprise convolutional and fraction-
ally strided (or transpose convolutional) layers respectively which
help in generating images similar to DCGANs. For this experiment,
we use the same dataset as used for DBM-based image genera-
tion. The images are resized to 28 × 28 × 1 where 1 represents
he channels or the colours, and since our data is black and white,
here is only a single channel that ranges between 0∼255. Next
all the pixel values are normalized with the division of 255 so
the values now lie between [0, 1]. Here, we take 60000 training
images as opposed to 10000 test images (6:1 split for training

size to testing size) with a batch size of 32. All the configuration
Fig. 32. CVAE generated image of the MNIST digit recognition dataset.

Table 4
Configuration settings for training of CVAE on MNIST digit recognition dataset.
Latent dimensions # epochs Learning rate Batch size Conv filters

2 10 0.001 32 32

Table 5
Configuration settings for training of DCGAN.
Input dimensions Batch size Learning rate (D, G) # epochs

64 × 64 × 3 64 0.0002 25

settings are provided by Table 4. Latent dimensions refers to
the central latent dimensions in CVAE which is the dimensions
of data being reconstructed between the encoder and decoder
networks. Conv filters refer to the number of filters applied on
each convolutional layer. The plotted output image of the CVAE
is illustrated by Fig. 32.

7.1.5. Implementation of generative adversarial network
In this implementation we make use of DCGANs to reconstruct

images from the CIFAR-10 dataset [64]. All input images are set to
have the dimensions 64 × 64 × 3 where 3 refers to the number
of channels, and thus 3 refers to channels R, G and B for red,
reen and blue which when combined can form any colour in
he visual spectrum. The configuration settings for training of
CGAN is given by Table 5. Note that learning rate for both,
iscriminator and generator networks (D, G) as given by Table 5 is
et at 0.0002. We notice that while training, the network collapses
andomly at epoch 15 (by randomly, we mean that it is not
andatory that this DCGAN with its specific hyperparameters
ould always collapse at epoch 15 on the same dataset), the
ffects of which start to become visible from epoch 14 as illus-
rated by Fig. 33 (bottom). The initial epoch results (epochs 1,
, 3) are shown by Fig. 33 (top) to illustrate how the DCGAN
earns the input distribution (as shown in Fig. 34) and corrects
mages initially. DCGANs, as mentioned earlier, are susceptible
o collapsing, and this experiment verifies that they are indeed
nstable and difficult to train.

Harshvardhan GM, M.K. Gourisaria, M. Pandey et al. / Computer Science Review 38 (2020) 100285 21

e

d
s

Fig. 33. (Top): Output of the DCGAN when initialized from epochs 1 till 3. (Bottom): Output of the DCGAN from epochs 13 till 15 where a collapse can be seen in
pochs 14 and 15.
Fig. 34. Real samples of the CIFAR-10 dataset that the DCGAN tries to model.

We now shift our analysis to focus on the generative models
iscussed in this paper that do not fall in the category of DL (as
hown in Fig. 2).
7.2. Analysis of pure ML-based generative models

When dealing with problems that require clustering, if the
distribution to be modelled has hidden, non observable param-
eters, a viable option is to use GMM. This is because the model
essentially assigns probabilities of each point being in some clus-
ter k and does not assume, as in the case of K-means clustering,
that the probability of a certain data point to belong to a certain
cluster is 1. GMMs are a lot more flexible in terms of cluster
covariance and thus we get more flexible clustering regions (ellip-
tical instead of circular) as observed in Fig. 4. Another advantage
of GMMs is that they accommodate mixed membership in the
sense that data points can probabilistically belong to more than
one cluster, as opposed to K-means which forcefully assigns one
cluster for each data point. In GMMs, a data point belongs to each
cluster to a different extent or degree. Mixed membership can be
beneficial in certain cases, for example, when trying to cluster
news articles based on their tags. In this case, a news article
may contain many tags, hence it may belong to many clusters,
however, some tags are more prominent and some other may
not be so prominent. This prominence reflects in the probability
assignments accordingly. In other cases, mixed membership may
not be so beneficial which can be considered a disadvantage of
GMMs, for example, when clustering items that cannot fall under
more than one cluster (say, organisms, which can only belong
to one species). In this case, K-means does a better job at hard
defining a single cluster for each data point.

LDA, as discussed in Section 2 is a dimensionality reduction
technique in actuality. However, we confine our focus to LDA
when applied on natural language processing (NLP) tasks (though

it can be applied on many other forms of data) as it has a more

22 Harshvardhan GM, M.K. Gourisaria, M. Pandey et al. / Computer Science Review 38 (2020) 100285

i
t
a
o
o
t
o
g
e
i
t
d
L
n
a
p
m
i
o
t
p
i
o

t
t
a
s
w
t
m
L
L
c
p
L
b

B
b
t
o
t
N
s
n
M
s
e
f
a
o
w
p
a
r
i
a
t
s

7

p
c
d

w
t
E
a
c
p
w
t
m
m
P
t
a

ntuitive use in this field for topic modelling. It assumes that
he corpora given as input contain documents which belong to
number of topics. Each topic is associated with a vocabulary
f words, and that each document is the result of a mixture
f probabilistic samplings — first over distribution of possible
opics of the input documents, and then over the amalgamation
f possible words in the selected topic. This general assumption
ives LDA the biggest advantage as opposed to other previously
mployed topic modelling approaches viz. latent semantic index-
ng (LSI) [93] and probabilistic LSI (pLSI) [94]. This advantage is
hat LDA can be extended to separate documents into topics for
ocuments that do not belong to the corpora it was trained on.
DA generalizes the model it uses for dimensionality reduction for
ew corpora. For example, if the LDA model was trained on news
rticles corpora to group the news articles into categories like
olitics, crime, sports, etc. it would be allowed to use the same
odel to categorize newly published articles. This is not possible

n LSI. Another advantage of LDA over pLSI is that the number
f parameters grow linearly with the number of documents in
he corpora in pLSI, whereas on the other hand, the number of
arameters in LDA goes linearly with the number of topics which
s much lower than pLSI. Hence, LDA can outperform pLSI in terms
f speed on much bigger datasets.
There are, however, many disadvantages of using LDA. First

here must exist prior knowledge about the number of topics;
he number of topics K is fixed. Secondly, it is not suitable to
pply LDA on short texts as found in [95] because LDA exploits
tatistical inference to discover hidden patterns in the data. Thus,
hen the data is very less (as in the case of tweets on Twitter),
here are very few observations to infer the parameters of the
odel which hinder with the accuracy of the whole affair. Thirdly,
DA cannot capture correlations between topics. For example,
DA will not be able to use to its advantage that a tag, say,
omputer science is highly correlated with another tag namely
rogramming language. Even with many more disadvantages,
DA has revolutionalized the field of topic modelling and has
ecome the central idea associated with it.
HMMs have been considered as a specific form of dynamic

ayesian networks and since 1980s have been used for modelling
iological sequences (e.g DNA). HMMs assume that the system
hey try to model is generated by a Markov process with hidden
r unknown parameters. Thus, these unknown parameters are
ried to be learnt based on the given observable parameters.
ot only biological sequence modelling, but they have been used
uccessfully for pattern recognition in the form of speech recog-
ition, OCR, data mining, classification and structural analysis.
ore generally, one can infer that an HMM can be applied if the
ystem to be modelled is made up of different stages or states that
xist in definite or typical orders. HMMs have strong statistical
oundation, are simple conceptually, and are very flexible — they
re the most flexible generalization of sequence profiling meth-
ds as they can handle inputs of variable length. The problem
ith these models, however, is that the number of unstructured
arameters can be very high quite often. Another problem that
rises in sequence labelling with HMMs is that at times, it is
equired to know the correlation between states that are not
mmediate neighbours as sequences can have contextual property
mong states and are also of certain length, all of which is not
aken into account by HMMs which only take the immediate next
tate in the transition function.

.2.1. Implementation of Gaussian mixture models
In the experiment, we randomly generate and plot 400 data

oints gathered around 4 different centres; 100 data points per
entre with a standard deviation of 0.6 and initialization of ran-
om state by 0. Next, we make another version of this scatter
 d
Table 6
Top 10 most prominent words generated by LDA over 5 topics.
Topics Prominent words (top 10)

1 Model, network, image, neural, figure, input, time, using,
images, neurons

2 State, learning, policy, time, function, value, action, algorithm,
optimal, reward

3 Data, model, models, distribution, using, 10, set, algorithm,
Gaussian, number

4 Algorithm, matrix, problem, function, theorem, set, 10, let, log,
learning

5 Learning, training, data, set, networks, neural, network,
classification, using, model

plot by stretching each of the four distributions unidirectionally
to better demonstrate results of GMMs and prove how effective
they are, as discussed, when the distribution is oblongated. Fig. 35
shows the two randomly generated data distributions. Further,
we apply GMM to both these distribution and as an addition,
also apply K-means (note that K-means implementation is not
provided in [89]) to compare our results. It is noticed that results
shown by Fig. 36 (Top) (a) and Fig. 36 (Bottom) (a) are quite simi-
lar because of a somewhat circular nature of the data distribution.
However, the true advantage of GMMs over K-means is realized
by Fig. 36 (Top) (b) and Fig. 36 (Bottom) (b) as we notice the
clusters generated by GMM is more precise due to its flexible
clustering capability as discussed in Section 1.

7.2.2. Implementation of latent Dirichlet allocation
For this experiment, we take a textual dataset which, af-

ter appropriate preprocessing, contains a raw mixture of author
names, abstracts, titles the text corresponding to every research
paper presented in NIPS (Neural Information Processing Systems)
conferences from the first conference in 1987 till the 2016 confer-
ence. To get an estimate of the most popular phrases used in the
papers, we generate a word cloud as represented by Fig. 37 (left)
and also a bar graph for the most popular words represented by
Fig. 37 (right). We apply LDA on this dataset for finding 5 topics
and print the 10 most prominent words and the results attained
are enlisted in Table 6. Further, introduce two terms saliency [96]
and relevance [97] in LDAs defined by,

saliency (w)

= f (w)
∑
T

P (T |w) log
P(T |w)
P(T)

(66)

relevance (w|T)

= λP (w|T) + (1 − λ)
P(w|T)
P(w)

(67)

here, w denotes a word from the data vocabulary, T denotes a
opic from the set of topics, P(E) denotes the probability of event
and λ denotes a weight parameter (0 ≤ λ ≤ 1). Saliency is
measure proposed by Chuang et al. (2012) [96] that aids rapid
lassification and disambiguation of topics. Relevance is a measure
roposed by Sievert et al. [97] (2014) of a term that provides users
ith an understanding of how useful the word is in describing
he topic. Based on these two parameters, we use LDAvis, a tool
ade by [97] to visualize inter-topic distances through multidi-
ensional scaling projected on principal component axes PC1 and
C2 between the 5 topics. Moreover, we show ranking of the
op 30 most salient and relevant words (decorated by light blue
nd red bars, respectively) in any selected topic with λ = 1 as
emonstrated by Fig. 38.

Harshvardhan GM, M.K. Gourisaria, M. Pandey et al. / Computer Science Review 38 (2020) 100285 23
Fig. 35. (Left): Randomly generated quad-centric data distribution. (Right): Randomly generated quad-centric stretched (oblong) data distribution.
Fig. 36. (Top): (a) GMM applied for clustering on randomly generated quad-centric data distribution. (b) GMM applied for clustering on randomly generated quad-
centric stretched (oblong) data distribution. (Bottom): (a) K-means used on the same distribution for clustering as displayed by Fig. 36 (Top) (a). (b) K-means applied
on the same distribution for clustering as displayed by Fig. 36 (Top) (b).
R

Table 7
Hidden state transition matrix.

L1 L2 L3 L4
L1 0.90 0.08 0.01 0.01
L2 0.01 0.90 0.05 0.04
L3 0.03 0.02 0.85 0.10
L4 0.05 0.02 0.23 0.70

7.2.3. Implementation of hidden Markov models
In this implementation, we assume there to be a particle x

that travels to different locations (four) given by the set L =

{L , L , L , L } and can be found at one of the locations in L at any
1 2 3 4 d
Table 8
State emission probability matrix.

R1 R2 R3 R4 R5 R6 R7 R8 R9

L1 0.01 0.01 0.20 0.01 0.30 0.05 0.01 0.40 0.01
L2 0.01 0.01 0.01 0.10 0.01 0.30 0.05 0.01 0.50
L3 0.30 0.20 0.01 0.10 0.01 0.30 0.05 0.02 0.01
L4 0.03 0.01 0.01 0.19 0.01 0.39 0.39 0.01 0.03

particular time t . We further assume that particle x emits certain
(nine) types of radiations defined by the set R = {R1, R2, R3, . . . ,

9} corresponding to the location it resides in at any time t . We
efine set R to be the set of the observables and L to be the set

24 Harshvardhan GM, M.K. Gourisaria, M. Pandey et al. / Computer Science Review 38 (2020) 100285

Fig. 37. (Left): Generated wordcloud. (Right): 10 most common words.

Fig. 38. Inter-topic distance map through multidimensional scaling along with the top 30 salient words (light blue bar) and their relevance in selected topic 1 (red
bar) with λ = 1. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 39. Training HMM to maximize the score over 100 epochs.

Harshvardhan GM, M.K. Gourisaria, M. Pandey et al. / Computer Science Review 38 (2020) 100285 25

t
L
d
i
d
l
W
w
o
o

t
i
d
w
e

7

g
a
b
b
t
m
i
s
i
a

7

o
a
g
g
d
w

n
E
m
c
i
l
F
o
c
a
o
d
h
a
w

T
R
c

Table 9
Initial state probability distribution matrix.
L1 L2 L3 L3
0 1 0 0

of hidden states in the HMM. At every time update, the particle
transitions from one hidden state to the other, L(t)

i → L(t+1)
j

and the probabilities of transitions between the hidden states is
given by Table 7. Next, we define the probabilities of particle x
o emit a certain type of radiation Ri while at any given location
j by Table 8. Finally, we present the initial state probability
istribution matrix by Table 9 which specifies where x resides
nitially. Note that Table 7, Table 8, and Table 9 specify the true
istribution of the system and are provided to demonstrate the
ikelihood of x to emit a certain event when in a certain state.
e apply our HMM on an arbitrary input of observed radiations
ithout the model’s prior knowledge of Tables 7 and 8 and train it
n 100 epochs (Fig. 39) to come up with predictions of likelihood
f the particle’s location as given by Table 10.
Note that since the model was initialized from a random state,

here is no control over the naming of hidden states of L which
s a convention of the model. In other words, the HMM model
oes not really know which locations we mean by Lj. In reality,
e shall have to swap the output label names which correctly
xplain the true emission probability distribution that exists.

.3. Comparisons

Table 11 gives an application-oriented comparison of all the
enerative models discussed in this paper to give the readers
quick overview on how the models compare with each other
ased on their pros and cons. Additionally, we formulated Ta-
le 12 to make users aware of the positive and negative aspects
hat we came across while implementing all the models. A sum-
ary and comparison of all the models discussed is given below

n Table 13 where MC, VI, LAI, AIS, CF, and PDE respectively
tand for Markov chain, variational inference, learnt approximate
nference, annealed importance sampling, collaborative filtering
nd Parzen density estimation.

.4. Difficulty of analysing generated samples

We have seen how GANs produce sharp generated images as
pposed to VAEs. One may be tempted to say that GANs are better
t generating images but that is a wide misconception. Usually,
enerative models are evaluated on the basis of how realistic the
enerated samples appear to be when compared with the data
istribution; a visual inspection. However, it is possible for a very
eak probabilistic model to generate very good samples.
One way to evaluate the models is to map the nearest

eighbour of the generated sample to the data distribution by
uclidean distance in data space x. Then it would be known if the
odel is overfitting as the generated sample would appear simply
opied from the sample in the training data. In this case, visual
nspection would definitely fail as the generated sample can still
ook very sharp. In another case, the model can also underfit.
or example, one can train a generative model on a dataset
f trees and houses. However, the model while generation can
reate samples only showing trees. To the normal person, this is
successful generative model as it generates high quality samples
f trees. However, it is required to know by the evaluator that the
ataset that the model was trained on also contained images of
ouses which are not being generated at all. The model does not
ssign any probability to training images of houses. Realistically,

hen the model is trained on thousands and thousands of modes
able 10
esults of the trained HMM on input sequence of emissions (radiations, in our
ase) based on the predictions of the hidden state (locations).
Time (t) Input observable emission

sequence (Radiation)
Output state
prediction (Location)

1 R6 L2
2 R6 L2
3 R6 L2
4 R9 L2
5 R6 L2
6 R6 L2
7 R6 L2
8 R6 L2
9 R3 L1
10 R5 L1
11 R5 L1
12 R5 L1
13 R5 L1
14 R5 L1
15 R4 L3
16 R4 L3
17 R8 L4
18 R8 L4
19 R8 L4
20 R1 L4
21 R7 L4
22 R7 L4
23 R7 L4
24 R2 L4

(statistically speaking), it may ignore a few modes which would
be very difficult to detect by human observation as one cannot
remember so many images to detect missing variations in the
generated samples.

These reasons also partially explain why VAEs can achieve
high data likelihood and be very close to the true posterior
distribution and still generate blurry samples as opposed to GANs.

Even if we turn to the evaluation of the log-likelihood that the
model assigns to test data we see that this method is not perfect
either. Sometimes the log-likelihood may measure unimportant
attributes and leave out the ones we want to be measured. Some
models may achieve high log-likelihood due to the assignment
of low variance to certain portions of the training data (say,
background of the images) which will never change. We say it is
a good thing to achieve high likelihood, but clearly, in this case,
it is not.

Therefore there is a need in the field of generative models in
machine learning to not just strive for better generated samples
but also to devise new ways of unbaisedly evaluating them.

7.5. Future directions

Future directions of generative modelling may point to mix-
ing up two or more generative models (HMM and LDA have
been jointly used for stem cell research, topic modelling, and
speech emotion recognition) [98–100] for a problem to overcome
the drawbacks faced when deploying models individually. More
interesting uses of generative models are text-to-image genera-
tion [101] using SGAN and stacking VAE and GAN for context
aware text-to-image generation [102], with more instances of
exploiting the VAE-GAN combination [103,104], which are more
examples of combining two generative models.

More research could be done on combining unsupervised
generative models with supervised models (semi-supervision) to
fine-tune (like we saw in Section 4.3 in DBMs) generation process
and make it more efficient. It is noticed that while energy based
models like BMs have been used in the field of recommender
systems, the newest addition GANs have not been employed
except in a few cases [105] and so applying these generative

26 Harshvardhan GM, M.K. Gourisaria, M. Pandey et al. / Computer Science Review 38 (2020) 100285

T
A

o
s

able 11
pplication-oriented comparison of all generative models.
Model Density estimation Advantages Disadvantages

GMM

Explicit

Flexible cluster covariance. Mixed membership of data
points.

Mixed membership not always the best choice. Fails to
perform in higher dimensional data (e.g > 6-D).

HMM Strong statistical foundation, simple concept, very
flexible.

Large number of unknown parameters in bigger
sequencing problems. Fails to understand correlations in
sequence.

LDA Extensible and applicable on new data points.
Parameters increase linearly with number of topics
— not documents (as in pLSI).

Requires prior knowledge of number of topics. Not
suitable for short texts. Fails to capture correlation
among topics.

RBM Expressive at encoding higher-order correlations due to
hidden layers. Allows for feature extraction to train
other models on top of.

Requires Markov chains — computationally expensive
and uncertain convergence time. Partition function
estimation is not easy.

DBN Powerful feature extractor for pattern recognition, can
be fine-tuned with a small labelled dataset.

Complex training procedure. Requires Markov chains.

DBM Efficient feature extraction. Higher performance gain by
adding layers.

Requires Markov chains, mean field approximations.
Complex training procedure.

VAE Achieves high data likelihood; precise control over
latent representations. Objective is measurable (lower
bound on goodness of model)

Generated samples are not sharp; blurry. Limited
approximation to true posterior.

(DC, FCC, C,
S) GANs

Implicit Parallel sample generation; fast. High sample quality. No
Markov chains needed.

Training requires finding Nash equilibrium — harder
problem than optimizing an objective function. Difficult
to train due to instability and possible collapse. Difficult
to evaluate empirically (easy subjectively).
Table 12
Encountered positive and negative aspects of each model while experimentation.
Model Pros Cons

GMM Strong Python 3 library support. Very powerful for complex shaped
clusters and easily visualized.

We noticed mixed membership or intersection of different
cluster regions which may not always be desirable.

LDA Over a corpora of text documents, we were able to detect n number of
topics and the top m words related to each topic where m and n were
decided by us. With LDAvis, some very useful insights were drawn.

Computation of LDAvis to generate the final report took
extensive memory and hours of processing. So did LDA in
generating the topics and the top 10 words.

HMM The HMM trained and gave an output prediction of the latent state
sequence with only the input of a single observable sequence; the
training prerequisite data (input sequence) was very simple.

Implementing HMM in our instance took memory of >8 GB
for a very simple model with not many observable and hidden
states.

RBM We provided a lengthy visible layer of 1682 nodes with only a single
hidden layer responsible for detecting 100 features (having 100 nodes)
with a test loss of 0.249 which is considered optimal for recommender
systems.

The data had to be preprocessed into binary form for proper
functioning of the RBM.

DBN Use of DBNs for classification had a huge impact on metrics like
precision, recall and F1 score.

We went through a complex and computationally expensive
pretraining process due to training the top level RBM for 20
epochs.

DBM Satisfactory sample quality on MNIST digit recognition dataset. Similarly complex training procedure as with DBNs.

CVAE Satisfactory sample quality on the same data as used for DBM, the
MNIST digit recognition dataset.

Library support for constructing CVAE was scarce.

DCGAN We noticed that up to 13 epochs the DCGAN had started generating
very realistic models and with some hypertuning it may have avoided a
collapse.

Each epoch was computationally expensive and time-taking.
Additionally, the GAN collapsed, the signs of which
crystallized by the 15th epoch.
models (not only GANs) to recommendation systems is another
future direction that can be taken by researchers. However, per-
haps the biggest development required in generative modelling
is a better way of interpretation of the generated samples as
discussed in Section 7.4. The problem with VAEs is that it may
spread probability mass where it may not make sense whereas
GANs may miss modes of the true distribution. There have been
initial approaches [106,107] that try to improve this and there has
been work that shows that directly optimizing likelihood can also
generate high quality samples [108] which show the direction to
future research in generative models.

Conclusion
In this paper, we provide a high level overview and analysis

f all the generative models used in modern day applications by
tudying their ideology of operation, properties, advantages and
disadvantages. We compare all the models juxtaposed with each
other based on their inference, sampling, probability evaluation,
design and looked at the fields they are employed in to bring
out some of the major differences between them. In addition, we
implemented each discussed model with details of the results
and our findings. It is worthy to mention that all the methods
described in this paper are fields of active research in the lit-
erature and every day we see these generative models put to
newer applications. This paper also points out the flaws in the
evaluation of generated samples and provides future directions to
the field of generative models. We hope that this survey provides
readers a comprehensive, high-level and exhaustive read on all
the generative models that exist and give them a fundamental

along with a practical understanding of them.

Harshvardhan GM, M.K. Gourisaria, M. Pandey et al. / Computer Science Review 38 (2020) 100285 27

c
t

F

a

R

Table 13
Comparison of all generative models discussed in this paper.
Model Inference Sampling P(x) evaluation Design Deployed in fields

MCI VI LAI

GMM ✖ ✖ ✖ No difficulties Tractable Simple; mixture of
probability distributions

Clustering, acoustics analysis, etc.

HMM ✖ ✖ ✖ No difficulties Tractable Involves hidden states;
level-wise simple

DNA sequence analysis, pattern recognition
in sound/speech, etc.

LDA ✖ ✖ ✖ No difficulties Tractable Many variables in play; to be
estimated

Dimensionality reduction, topic modelling,
etc.

RBM ✖ ✔ ✖ Requires Markov
chain

May be approximated via
AIS; intractable

Complex, designed carefully
to ensure various parameters

Dimensionality reduction,
regression/classification, CF, topic
modelling, etc.

DBN ✖ ✔ ✖ Requires Markov
chain

May be approximated via
AIS; intractable

Complex, designed carefully
to ensure various parameters

Classification, speech recognition,
information retrieval, drug discovery, etc.

DBM ✖ ✔ ✖ Requires Markov
chain

May be approximated via
AIS; intractable

Complex, designed carefully
to ensure various parameters

Pattern recognition, information retrieval,
regression/classification, etc.

VAE ✔ ✖ ✖ Requires Markov
chain

Not represented clearly,
may be estimated via PDE

Any differentiable function
permitted

Image forecasting, CF, modelling acoustic
features and molecule design, etc.

GAN ✖ ✖ ✔ No difficulties Not represented clearly,
may be estimated via PDE

Any differentiable function
permitted

Drug discovery, anomaly detection, image
analysis and transformations, etc.

DC-
GAN

✖ ✖ ✔ No difficulties Not represented clearly,
may be estimated via PDE

Any differentiable function
permitted

Image generation

FCC-
GAN

✖ ✖ ✔ No difficulties Not represented clearly,
may be estimated via PDE

Any differentiable function
permitted

High quality image generation, etc.

CGAN ✖ ✖ ✔ No difficulties Not represented clearly,
may be estimated via PDE

Any differentiable function
permitted

Face generation and ageing simulation,
image feature editing, speech enhancement,
language identification, etc.

SGAN ✖ ✖ ✔ No difficulties Not represented clearly,
may be estimated via PDE

Any differentiable function
permitted

Text-to-image generation, image analysis
and transformations, etc.
Declaration of competing interest

The authors declare that they have no known competing finan-
ial interests or personal relationships that could have appeared
o influence the work reported in this paper.

unding

This research did not receive any specific grant from funding
gencies in the public, commercial, or not-for-profit sectors.

eferences

[1] P. Liu, S. Han, Z. Meng, Y. Tong, Facial expression recognition via a boosted
deep belief network, in: IEEE Conference on Computer Vision and Pattern
Recognition, 2014, http://dx.doi.org/10.1109/cvpr.2014.233.

[2] Y. Chen, X. Zhao, X. Jia, Spectral–spatial classification of hyperspectral
data based on deep belief network, IEEE J. Sel. Top. Appl. Earth Obs.
Remote Sens. 8 (6) (2015) 2381–2392, http://dx.doi.org/10.1109/jstars.
2015.2388577.

[3] R. Durbin, S. Eddy, S. Krogh, G. Mitchison, Biological Sequence Analysis,
Cambridge University Press, Cambridge, 1998.

[4] P. Baldi, S. Brunak, Bioinformatics: A Machine Learning Approach, second
ed., MIT Press, 2001.

[5] R. Krestel, P. Fankhauser, W. Nejdl, Latent dirichlet allocation for tag
recommendation, in: Proceedings of the Third ACM Conference on
Recommender Systems - RecSys ’09, 2009, http://dx.doi.org/10.1145/
1639714.1639726.

[6] W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C.Y. Fu, A.C. Berg,
Ssd: Single shot multibox detector, in: European Conference on Computer
Vision, 2016, pp. 21–37.

[7] J. Redmon, S. Divvala, R. Girshick, A. Farhadi, You only look once: Unified,
real-time object detection, in: Proceedings of the IEEE conference on
computer vision and pattern recognition, 2016, pp. 779-788.

[8] S. Ren, K. He, R. Girshick, J. Sun, Faster r-cnn: Towards real-time
object detection with region proposal networks, in: Advances in Neural
Information Processing Systems, 2015, pp. 91–99.

[9] K. He, G. Gkioxari, P. Dollár, R. Girshick, Mask. r cnn, Mask r-cnn, in:
Proceedings of the IEEE international conference on computer vision,
2017, pp. 2961-2969.
[10] P. Rajpurkar, J. Irvin, K. Zhu, B. Yang, H. Mehta, T. Duan, . . ., M.P. Lungren,
Chexnet: Radiologist-level pneumonia detection on chest x-rays with
deep learning, 2017, arXiv preprint arXiv:1711.05225.

[11] M.A. Nayak, S. Ghosh, Prediction of extreme rainfall event using weather
pattern recognition and support vector machine classifier, Theor. Appl.
Climatol. 114 (3–4) (2013) 583–603.

[12] B. Yang, L.X. Li, H. Ji, J. Xu, An early warning system for loan risk
assessment using artificial neural networks, Knowledge-Based Systems
14 (5–6) (2001) 303–306.

[13] A. Likas, N. Vlassis, J. Verbeek, The global k-means clustering algorithm,
Pattern Recognit. 36 (2) (2003) 451–461, http://dx.doi.org/10.1016/s0031-
3203(02)00060-2.

[14] J.R. Hershey, P.A. Olsen, Approximating the kullback leibler divergence
between Gaussian mixture models, in: IEEE International Conference
on Acoustics, Speech and Signal Processing - ICASSP ’07, 2007, http:
//dx.doi.org/10.1109/icassp.2007.366913.

[15] D. Povey, L. Burget, M. Agarwal, P. Akyazi, K. Feng, A. Ghoshal, et
al., Subspace Gaussian mixture models for speech recognition, in: IEEE
International Conference on Acoustics, Speech and Signal Processing,
2010, http://dx.doi.org/10.1109/icassp.2010.5495662.

[16] T. Chen, C. Huang, E. Chang, J. Wang, Automatic accent identification
using Gaussian mixture models, in: IEEE Workshop on Automatic Speech
Recognition and Understanding. ASRU ’01, 2001, http://dx.doi.org/10.
1109/asru.2001.1034657.

[17] P. Dupont, F. Denis, Y. Esposito, Links between probabilistic automata
and hidden Markov models: probability distributions, learning models
and induction algorithms, Pattern Recognit. 38 (9) (2005) 1349–1371,
http://dx.doi.org/10.1016/j.patcog.2004.03.020.

[18] L.R. Bahl, P.F. Brown, P.V. de Souza, R.L. Mercer, Estimating hidden Markov
model parameters so as to maximize speech recognition accuracy, IEEE
Trans. Speech Audio Process. 1 (1) (1993) 77–83, http://dx.doi.org/10.
1109/89.221369.

[19] K.F. Lee, On large-vocabulary speaker-independent continuous speech
recognition, Speech Commun. 7 (4) (1988) 375–379, http://dx.doi.org/10.
1016/0167-6393(88)90053-2.

[20] L. Rabiner, B.H. Juang, Fundamentals of Speech Recognition, Prentice-Hall,
Englewood Cliffs, NJ, 1993.

[21] F. Jelinek, Statistical Methods for Speech Recognition, MIT Press,
Cambridge, MA, 1998.

[22] O.E. Agazzi, S. Kuo, Hidden markov model based optical character recogni-
tion in the presence of deterministic transformations, Pattern Recognit. 26
(12) (1993) 1813–1826, http://dx.doi.org/10.1016/0031-3203(93)90178-y.

[23] D.M. Blei, A.Y. Ng, M.I. Jordan, Latent Dirichlet allocation, J. Mach. Learn.
Res. 3 (2003) 993–1022, http://dx.doi.org/10.1162/jmlr.2003.3.4-5.993.

http://dx.doi.org/10.1109/cvpr.2014.233
http://dx.doi.org/10.1109/jstars.2015.2388577
http://dx.doi.org/10.1109/jstars.2015.2388577
http://dx.doi.org/10.1109/jstars.2015.2388577
http://refhub.elsevier.com/S1574-0137(20)30385-3/sb3
http://refhub.elsevier.com/S1574-0137(20)30385-3/sb3
http://refhub.elsevier.com/S1574-0137(20)30385-3/sb3
http://refhub.elsevier.com/S1574-0137(20)30385-3/sb4
http://refhub.elsevier.com/S1574-0137(20)30385-3/sb4
http://refhub.elsevier.com/S1574-0137(20)30385-3/sb4
http://dx.doi.org/10.1145/1639714.1639726
http://dx.doi.org/10.1145/1639714.1639726
http://dx.doi.org/10.1145/1639714.1639726
http://refhub.elsevier.com/S1574-0137(20)30385-3/sb6
http://refhub.elsevier.com/S1574-0137(20)30385-3/sb6
http://refhub.elsevier.com/S1574-0137(20)30385-3/sb6
http://refhub.elsevier.com/S1574-0137(20)30385-3/sb6
http://refhub.elsevier.com/S1574-0137(20)30385-3/sb6
http://refhub.elsevier.com/S1574-0137(20)30385-3/sb8
http://refhub.elsevier.com/S1574-0137(20)30385-3/sb8
http://refhub.elsevier.com/S1574-0137(20)30385-3/sb8
http://refhub.elsevier.com/S1574-0137(20)30385-3/sb8
http://refhub.elsevier.com/S1574-0137(20)30385-3/sb8
http://arxiv.org/abs/1711.05225
http://refhub.elsevier.com/S1574-0137(20)30385-3/sb11
http://refhub.elsevier.com/S1574-0137(20)30385-3/sb11
http://refhub.elsevier.com/S1574-0137(20)30385-3/sb11
http://refhub.elsevier.com/S1574-0137(20)30385-3/sb11
http://refhub.elsevier.com/S1574-0137(20)30385-3/sb11
http://refhub.elsevier.com/S1574-0137(20)30385-3/sb12
http://refhub.elsevier.com/S1574-0137(20)30385-3/sb12
http://refhub.elsevier.com/S1574-0137(20)30385-3/sb12
http://refhub.elsevier.com/S1574-0137(20)30385-3/sb12
http://refhub.elsevier.com/S1574-0137(20)30385-3/sb12
http://dx.doi.org/10.1016/s0031-3203(02)00060-2
http://dx.doi.org/10.1016/s0031-3203(02)00060-2
http://dx.doi.org/10.1016/s0031-3203(02)00060-2
http://dx.doi.org/10.1109/icassp.2007.366913
http://dx.doi.org/10.1109/icassp.2007.366913
http://dx.doi.org/10.1109/icassp.2007.366913
http://dx.doi.org/10.1109/icassp.2010.5495662
http://dx.doi.org/10.1109/asru.2001.1034657
http://dx.doi.org/10.1109/asru.2001.1034657
http://dx.doi.org/10.1109/asru.2001.1034657
http://dx.doi.org/10.1016/j.patcog.2004.03.020
http://dx.doi.org/10.1109/89.221369
http://dx.doi.org/10.1109/89.221369
http://dx.doi.org/10.1109/89.221369
http://dx.doi.org/10.1016/0167-6393(88)90053-2
http://dx.doi.org/10.1016/0167-6393(88)90053-2
http://dx.doi.org/10.1016/0167-6393(88)90053-2
http://refhub.elsevier.com/S1574-0137(20)30385-3/sb20
http://refhub.elsevier.com/S1574-0137(20)30385-3/sb20
http://refhub.elsevier.com/S1574-0137(20)30385-3/sb20
http://refhub.elsevier.com/S1574-0137(20)30385-3/sb21
http://refhub.elsevier.com/S1574-0137(20)30385-3/sb21
http://refhub.elsevier.com/S1574-0137(20)30385-3/sb21
http://dx.doi.org/10.1016/0031-3203(93)90178-y
http://dx.doi.org/10.1162/jmlr.2003.3.4-5.993

28 Harshvardhan GM, M.K. Gourisaria, M. Pandey et al. / Computer Science Review 38 (2020) 100285
[24] I. Bíró, J. Szabó, A.A. Benczúr, Latent dirichlet allocation in web spam fil-
tering, in: Proceedings of the 4th International Workshop on Adversarial
Information Retrieval on the Web - AIRWeb ’08, 2008, http://dx.doi.org/
10.1145/1451983.1451991.

[25] S.K. Lukins, N.A. Kraft, L.H. Etzkorn, Bug localization using latent Dirichlet
allocation, Inf. Softw. Technol. 52 (9) (2010) 972–990, http://dx.doi.org/
10.1016/j.infsof.2010.04.002.

[26] M. Lienou, H. Maitre, M. Datcu, Semantic annotation of satellite images
using latent Dirichlet allocation, IEEE Geosci. Remote Sens. Lett. 7 (1)
(2010) 28–32, http://dx.doi.org/10.1109/lgrs.2009.2023536.

[27] O. Woodford, Notes on contrastive divergence, 2006, http://www.robots.
ox.ac.uk/~ojw/files/NotesOnCD.pdf (accessed 29 March 2020).

[28] Y. LeCun, A tutorial on energy-based learning, 2006, http://yann.lecun.
com/exdb/publis/pdf/lecun-06.pdf (accessed 30 March 2020).

[29] R. Salakhutdinov, A. Mnih, G. Hinton, Restricted Boltzmann machines for
collaborative filtering, in: Proceedings of the 24th International Confer-
ence on Machine Learning - ICML ’07, 2007, http://dx.doi.org/10.1145/
1273496.1273596.

[30] K. Georgiev, P. Preslav Nakov, A non-iid framework for collaborative
filtering with restricted boltzmann machines, ICML (2003) 1148–1156.

[31] Y.W. The, G.E. Hinton, G.E, Rate-coded restricted Boltzmann machines for
face recognition, Adv. Neural Inf. Process. Syst. 13 (2001) 908–914.

[32] N. Jaitly, G. Hinton, Learning a better representation of speech sound-
waves using restricted boltzmann machines, in: IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP), 2011,
http://dx.doi.org/10.1109/icassp.2011.5947700.

[33] L.H. Chen, Z.H. Ling, Y. Song, L.R. Dai, Joint spectral distribution mod-
eling using restricted boltzmann machines for voice conversion, in:
INTERSPEECH-2013, 2013, pp. 3052–3056.

[34] A. Mohamed, G. Hinton, Phone recognition using restricted Boltzmann
machines, in: IEEE International Conference on Acoustics, Speech and
Signal Processing, 2010, http://dx.doi.org/10.1109/icassp.2010.5495651.

[35] L. Wang, K. Liu, Sentiment-aspect extraction based on restricted
Boltzmann machines, ACL (2015).

[36] R.M. Neal, Connectionist learning of belief networks, Artificial Intelligence
56 (1) (1992) 71–113, http://dx.doi.org/10.1016/0004-3702(92)90065-6.

[37] G.E. Hinton, S. Osindero, Y. Teh, A fast learning algorithm for deep belief
nets, Neural Comput. 18 (2006) 1527–1554.

[38] Y. Bengio, P. Lamblin, D. Popovici, H. Larochelle, Greedy layerwise training
of deep networks, in: Proceedings of the 20th International Conference
on Neural Information Processing Systems (NIPS’07), 2007, pp. 153–160.

[39] A.M. Abdel-Zaher, A.M. Eldeib, Breast cancer classification using deep
belief networks, Expert Syst. Appl. 46 (2016) 139–144, http://dx.doi.org/
10.1016/j.eswa.2015.10.015.

[40] T. Kuremoto, S. Kimura, K. Kobayashi, M. Obayashi, Time series forecasting
using a deep belief network with restricted Boltzmann machines, Neu-
rocomputing 137 (2014) 47–56, http://dx.doi.org/10.1016/j.neucom.2013.
03.047.

[41] X.L. Zhang, J. Wu, Deep belief networks based voice activity detection,
IEEE Trans. Audio Speech Lang. Process. 21 (4) (2013) 697–710, http:
//dx.doi.org/10.1109/tasl.2012.2229986.

[42] H. Lee, Y. Largman, P. Pham, A.Y. Ng, Unsupervised feature learning
for audio classification using convolutional deep belief networks, in:
Proceedings of the 22nd International Conference on Neural Information
Processing Systems (NIPS’09), 2009.

[43] R. Salakhutdinov, G. Hinton, Deep Boltzmann machines, in: Proceedings
of the Twelth International Conference on Artificial Intelligence and
Statistics, Vol. 5, 2009, pp. 448-455.

[44] G.E. Hinton, T. Sejnowski, Optimal perceptual inference, in: IEEE
Conference on Computer Vision and Pattern Recognition, 1983.

[45] R. Salakhutdinov, H. Larochelle, Efficient learning of deep boltzmann
machines AISTATS, PMLR (2010) 693–700.

[46] N. Srivastava, R. Salakhutdinov, G. Hinton, Modeling documents with a
deep Boltzmann machine, in: Proceedings of the Twenty-Ninth Confer-
ence on Uncertainty in Artificial Intelligence (UAI’13), AUAI Press, 2013,
pp. 616–624.

[47] N. Srivastava, R. Salakhutdinov, Multimodal learning with deep Boltzmann
machines, JMLR 15 (1) (2014) 2949–2980.

[48] Y. Zhang, R. Salakhutdinov, H.A. Chang, J. Glass, Resource configurable
spoken query detection using deep Boltzmann machines, in: IEEE Inter-
national Conference on Acoustics, Speech and Signal Processing (ICASSP),
2012, http://dx.doi.org/10.1109/icassp.2012.6289082.

[49] B. Leng, X. Zhang, M. Yao, Z. Xiong, A 3D model recognition mecha-
nism based on deep Boltzmann machines, Neurocomputing 151 (2015)
593–602, http://dx.doi.org/10.1016/j.neucom.2014.06.084.

[50] W. Liu, R. Ji, S. Li, Towards 3D object detection with bimodal deep Boltz-
mann machines over RGBD imagery, in: IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), 2015, http://dx.doi.org/10.1109/
cvpr.2015.7298920.
[51] C.N. Duong, K. Luu, K.G. Quach, T.D. Bui, Beyond principal components:
Deep Boltzmann machines for face modeling, in: IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), 2015, http://dx.doi.org/
10.1109/cvpr.2015.7299111.

[52] S. Sedhain, A.K. Menon, S. Sanner, L. Xie, Autorec, in: Proceedings of
the 24th International Conference on World Wide Web - WWW ’15
Companion, 2015, http://dx.doi.org/10.1145/2740908.2742726.

[53] M.A. Carreira-Perpinan, R. Raziperchikolaei, Hashing with binary autoen-
coders. In Proceedings of the IEEE conference on computer vision and
pattern recognition, 2015, pp. 557–566.

[54] J. Engel, C. Resnick, A. Roberts, S. Dieleman, M. Norouzi, D. Eck, K.
Simonyan, Neural audio synthesis of musical notes with wavenet autoen-
coders, in: Proceedings of the 34th International Conference on Machine
Learning (ICML’17), Vol. 70, JMLR.org, 2017, pp. 1068–1077.

[55] D.P. Kingma, M. Welling, Auto-encoding variational Bayes, ICLR (2014).
[56] J. Walker, C. Doersch, A. Gupta, M. Hebert, An Uncertain Future: Fore-

casting from Static Images using Variational Autoencoders, Lecture Notes
in Computer Science, 2016, pp. 835–851, http://dx.doi.org/10.1007/978-
3-319-46478-7_51.

[57] D. Liang, R.G. Krishnan, M.D. Hoffman, T. Jebara, Variational autoencoders
for collaborative filtering, in: Proceedings of the 2018 World Wide Web
Conference on World Wide Web - WWW ’18, 2018, http://dx.doi.org/10.
1145/3178876.3186150.

[58] A. Roberts, J. Engel, D. Eck, Hierarchical variational autoencoders for
music, in: NIPS Workshop on Machine Learning for Creativity and Design,
2017.

[59] M. Blaauw, J. Bonada, Modeling and Transforming Speech using
Variational Autoencoders, Interspeech; ISCA, 2016, pp. 1770–1774,

[60] S. Latif, R. Rana, J. Qadir, J. Epps, Variational autoencoders for learning
latent representations of speech emotion, 2017, ArXiv, abs/1712.08708.

[61] Q. Liu, M. Allamanis, M. Brockschmidt, A. Gaunt, Constrained graph
variational autoencoders for molecule design, Adv. Neural Inf. Process.
Syst. (2018) 7795–7804.

[62] I.J. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S.
Ozair, A. Courville, Y. Bengio, Generative.adversarial. nets, Generative
adversarial nets, in: Proceedings of the 27th International Conference on
Neural Information Processing Systems (NIPS’14), Vol. 2, MIT Press, 2014,
pp. 2672–2680.

[63] A. Radford, L. Metz, S. Chintala, Unsupervised representation learning
with deep convolutional generative adversarial networks, 2015, CoRR,
abs/1511.06434.

[64] A. Krizhevsky, G. Hinton, Learning multiple layers of features from tiny
images, 2009, [dataset] https://www.cs.toronto.edu/~kriz/cifar.html.

[65] J.T. Springenberg, A. Dosovitskiy, T. Brox, M. Riedmiller, Striving for
simplicity: The all convolutional net, 2014, arXiv preprint arXiv:1412.
6806.

[66] V. Nair, G. Hinton, Rectified linear units improve restricted boltzmann
machines, in: Proceedings of the 27th International Conference on In-
ternational Conference on Machine Learning (ICML’10), Omnipress, 2010,
pp. 807–814.

[67] A.L. Maas, A.Y. Hannun, A.Y. Ng, Rectifier nonlinearities improve neural
network acoustic models, in: Proc. ICML, Vol. 30 (1), 2013, p. 3.

[68] B. Xu, N. Wang, T. Chen, M. Li, Empirical evaluation of rectified activations
in convolutional network, 2015, arXiv preprint arXiv:1505.00853.

[69] W. Fang, F. Zhang, V.S. Sheng, Y. Ding, A method for improving CNN-
based image recognition using DCGAN CMC: Comput, Mater. Continua
57 (1) (2018) 167–178.

[70] H. Heo, Y. Hwang, Automatic sketch colorization using DCGAN, in:
2018 18th International Conference on Control, Automation and Systems
(ICCAS), 2018, pp. 1316–1318.

[71] W. Fang, Y. Ding, F. Zhang, J. Sheng, Gesture recognition based on
CNN and DCGAN for calculation and text output, IEEE Access 7 (2019)
28230–28237.

[72] D.D. Kim, M.T. Shahid, Y. Kim, W.J. Lee, H.C. Song, F. Piccialli, K.N. Choi,
Generating pedestrian training dataset using DCGAN, in: Proceedings of
the 2019 3rd International Conference on Advances in Image Processing,
2019, November, pp. 1-4.

[73] P.L. Suárez, A.D. Sappa, B.X. Vintimilla, Infrared image colorization based
on a triplet dcgan architecture, in: Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition Workshops, 2017, pp. 18-23.

[74] S. Barua, S.M. Erfani, J. Bailey, FCC-gan: A fully connected and con-
volutional net architecture for GANs, 2019, arXiv preprint arXiv:1905.
02417.

[75] M. Mirza, S. Osindero, Conditional generative adversarial nets, 2014, arXiv
preprint arXiv:1411.1784.

[76] J. Gauthier, Conditional generative adversarial nets for convolutional face
generation, in: Class Project for Stanford CS231N: Convolutional Neural
Networks for Visual Recognition, Winter Semester, Vol. 5, 2014, p. 2.

[77] G. Antipov, M. Baccouche, J.L. Dugelay, Face aging with conditional
generative adversarial networks, in: IEEE International Conference on
Image Processing (ICIP), 2017, pp. 2089–2093.

http://dx.doi.org/10.1145/1451983.1451991
http://dx.doi.org/10.1145/1451983.1451991
http://dx.doi.org/10.1145/1451983.1451991
http://dx.doi.org/10.1016/j.infsof.2010.04.002
http://dx.doi.org/10.1016/j.infsof.2010.04.002
http://dx.doi.org/10.1016/j.infsof.2010.04.002
http://dx.doi.org/10.1109/lgrs.2009.2023536
http://www.robots.ox.ac.uk/~ojw/files/NotesOnCD.pdf
http://www.robots.ox.ac.uk/~ojw/files/NotesOnCD.pdf
http://www.robots.ox.ac.uk/~ojw/files/NotesOnCD.pdf
http://yann.lecun.com/exdb/publis/pdf/lecun-06.pdf
http://yann.lecun.com/exdb/publis/pdf/lecun-06.pdf
http://yann.lecun.com/exdb/publis/pdf/lecun-06.pdf
http://dx.doi.org/10.1145/1273496.1273596
http://dx.doi.org/10.1145/1273496.1273596
http://dx.doi.org/10.1145/1273496.1273596
http://refhub.elsevier.com/S1574-0137(20)30385-3/sb30
http://refhub.elsevier.com/S1574-0137(20)30385-3/sb30
http://refhub.elsevier.com/S1574-0137(20)30385-3/sb30
http://refhub.elsevier.com/S1574-0137(20)30385-3/sb31
http://refhub.elsevier.com/S1574-0137(20)30385-3/sb31
http://refhub.elsevier.com/S1574-0137(20)30385-3/sb31
http://dx.doi.org/10.1109/icassp.2011.5947700
http://refhub.elsevier.com/S1574-0137(20)30385-3/sb33
http://refhub.elsevier.com/S1574-0137(20)30385-3/sb33
http://refhub.elsevier.com/S1574-0137(20)30385-3/sb33
http://refhub.elsevier.com/S1574-0137(20)30385-3/sb33
http://refhub.elsevier.com/S1574-0137(20)30385-3/sb33
http://dx.doi.org/10.1109/icassp.2010.5495651
http://refhub.elsevier.com/S1574-0137(20)30385-3/sb35
http://refhub.elsevier.com/S1574-0137(20)30385-3/sb35
http://refhub.elsevier.com/S1574-0137(20)30385-3/sb35
http://dx.doi.org/10.1016/0004-3702(92)90065-6
http://refhub.elsevier.com/S1574-0137(20)30385-3/sb37
http://refhub.elsevier.com/S1574-0137(20)30385-3/sb37
http://refhub.elsevier.com/S1574-0137(20)30385-3/sb37
http://dx.doi.org/10.1016/j.eswa.2015.10.015
http://dx.doi.org/10.1016/j.eswa.2015.10.015
http://dx.doi.org/10.1016/j.eswa.2015.10.015
http://dx.doi.org/10.1016/j.neucom.2013.03.047
http://dx.doi.org/10.1016/j.neucom.2013.03.047
http://dx.doi.org/10.1016/j.neucom.2013.03.047
http://dx.doi.org/10.1109/tasl.2012.2229986
http://dx.doi.org/10.1109/tasl.2012.2229986
http://dx.doi.org/10.1109/tasl.2012.2229986
http://refhub.elsevier.com/S1574-0137(20)30385-3/sb44
http://refhub.elsevier.com/S1574-0137(20)30385-3/sb44
http://refhub.elsevier.com/S1574-0137(20)30385-3/sb44
http://refhub.elsevier.com/S1574-0137(20)30385-3/sb45
http://refhub.elsevier.com/S1574-0137(20)30385-3/sb45
http://refhub.elsevier.com/S1574-0137(20)30385-3/sb45
http://refhub.elsevier.com/S1574-0137(20)30385-3/sb46
http://refhub.elsevier.com/S1574-0137(20)30385-3/sb46
http://refhub.elsevier.com/S1574-0137(20)30385-3/sb46
http://refhub.elsevier.com/S1574-0137(20)30385-3/sb46
http://refhub.elsevier.com/S1574-0137(20)30385-3/sb46
http://refhub.elsevier.com/S1574-0137(20)30385-3/sb46
http://refhub.elsevier.com/S1574-0137(20)30385-3/sb46
http://refhub.elsevier.com/S1574-0137(20)30385-3/sb47
http://refhub.elsevier.com/S1574-0137(20)30385-3/sb47
http://refhub.elsevier.com/S1574-0137(20)30385-3/sb47
http://dx.doi.org/10.1109/icassp.2012.6289082
http://dx.doi.org/10.1016/j.neucom.2014.06.084
http://dx.doi.org/10.1109/cvpr.2015.7298920
http://dx.doi.org/10.1109/cvpr.2015.7298920
http://dx.doi.org/10.1109/cvpr.2015.7298920
http://dx.doi.org/10.1109/cvpr.2015.7299111
http://dx.doi.org/10.1109/cvpr.2015.7299111
http://dx.doi.org/10.1109/cvpr.2015.7299111
http://dx.doi.org/10.1145/2740908.2742726
http://refhub.elsevier.com/S1574-0137(20)30385-3/sb53
http://refhub.elsevier.com/S1574-0137(20)30385-3/sb53
http://refhub.elsevier.com/S1574-0137(20)30385-3/sb53
http://refhub.elsevier.com/S1574-0137(20)30385-3/sb53
http://refhub.elsevier.com/S1574-0137(20)30385-3/sb53
http://refhub.elsevier.com/S1574-0137(20)30385-3/sb54
http://refhub.elsevier.com/S1574-0137(20)30385-3/sb54
http://refhub.elsevier.com/S1574-0137(20)30385-3/sb54
http://refhub.elsevier.com/S1574-0137(20)30385-3/sb54
http://refhub.elsevier.com/S1574-0137(20)30385-3/sb54
http://refhub.elsevier.com/S1574-0137(20)30385-3/sb54
http://refhub.elsevier.com/S1574-0137(20)30385-3/sb54
http://refhub.elsevier.com/S1574-0137(20)30385-3/sb55
http://dx.doi.org/10.1007/978-3-319-46478-7_51
http://dx.doi.org/10.1007/978-3-319-46478-7_51
http://dx.doi.org/10.1007/978-3-319-46478-7_51
http://dx.doi.org/10.1145/3178876.3186150
http://dx.doi.org/10.1145/3178876.3186150
http://dx.doi.org/10.1145/3178876.3186150
http://refhub.elsevier.com/S1574-0137(20)30385-3/sb58
http://refhub.elsevier.com/S1574-0137(20)30385-3/sb58
http://refhub.elsevier.com/S1574-0137(20)30385-3/sb58
http://refhub.elsevier.com/S1574-0137(20)30385-3/sb58
http://refhub.elsevier.com/S1574-0137(20)30385-3/sb58
http://refhub.elsevier.com/S1574-0137(20)30385-3/sb59
http://refhub.elsevier.com/S1574-0137(20)30385-3/sb59
http://refhub.elsevier.com/S1574-0137(20)30385-3/sb59
http://refhub.elsevier.com/S1574-0137(20)30385-3/sb60
http://refhub.elsevier.com/S1574-0137(20)30385-3/sb60
http://refhub.elsevier.com/S1574-0137(20)30385-3/sb60
http://refhub.elsevier.com/S1574-0137(20)30385-3/sb61
http://refhub.elsevier.com/S1574-0137(20)30385-3/sb61
http://refhub.elsevier.com/S1574-0137(20)30385-3/sb61
http://refhub.elsevier.com/S1574-0137(20)30385-3/sb61
http://refhub.elsevier.com/S1574-0137(20)30385-3/sb61
http://refhub.elsevier.com/S1574-0137(20)30385-3/sb62
http://refhub.elsevier.com/S1574-0137(20)30385-3/sb62
http://refhub.elsevier.com/S1574-0137(20)30385-3/sb62
http://refhub.elsevier.com/S1574-0137(20)30385-3/sb62
http://refhub.elsevier.com/S1574-0137(20)30385-3/sb62
http://refhub.elsevier.com/S1574-0137(20)30385-3/sb62
http://refhub.elsevier.com/S1574-0137(20)30385-3/sb62
http://refhub.elsevier.com/S1574-0137(20)30385-3/sb62
http://refhub.elsevier.com/S1574-0137(20)30385-3/sb62
http://refhub.elsevier.com/S1574-0137(20)30385-3/sb63
http://refhub.elsevier.com/S1574-0137(20)30385-3/sb63
http://refhub.elsevier.com/S1574-0137(20)30385-3/sb63
http://refhub.elsevier.com/S1574-0137(20)30385-3/sb63
http://refhub.elsevier.com/S1574-0137(20)30385-3/sb63
https://www.cs.toronto.edu/~kriz/cifar.html
http://arxiv.org/abs/1412.6806
http://arxiv.org/abs/1412.6806
http://arxiv.org/abs/1412.6806
http://refhub.elsevier.com/S1574-0137(20)30385-3/sb66
http://refhub.elsevier.com/S1574-0137(20)30385-3/sb66
http://refhub.elsevier.com/S1574-0137(20)30385-3/sb66
http://refhub.elsevier.com/S1574-0137(20)30385-3/sb66
http://refhub.elsevier.com/S1574-0137(20)30385-3/sb66
http://refhub.elsevier.com/S1574-0137(20)30385-3/sb66
http://refhub.elsevier.com/S1574-0137(20)30385-3/sb66
http://arxiv.org/abs/1505.00853
http://refhub.elsevier.com/S1574-0137(20)30385-3/sb69
http://refhub.elsevier.com/S1574-0137(20)30385-3/sb69
http://refhub.elsevier.com/S1574-0137(20)30385-3/sb69
http://refhub.elsevier.com/S1574-0137(20)30385-3/sb69
http://refhub.elsevier.com/S1574-0137(20)30385-3/sb69
http://refhub.elsevier.com/S1574-0137(20)30385-3/sb70
http://refhub.elsevier.com/S1574-0137(20)30385-3/sb70
http://refhub.elsevier.com/S1574-0137(20)30385-3/sb70
http://refhub.elsevier.com/S1574-0137(20)30385-3/sb70
http://refhub.elsevier.com/S1574-0137(20)30385-3/sb70
http://refhub.elsevier.com/S1574-0137(20)30385-3/sb71
http://refhub.elsevier.com/S1574-0137(20)30385-3/sb71
http://refhub.elsevier.com/S1574-0137(20)30385-3/sb71
http://refhub.elsevier.com/S1574-0137(20)30385-3/sb71
http://refhub.elsevier.com/S1574-0137(20)30385-3/sb71
http://arxiv.org/abs/1905.02417
http://arxiv.org/abs/1905.02417
http://arxiv.org/abs/1905.02417
http://arxiv.org/abs/1411.1784
http://refhub.elsevier.com/S1574-0137(20)30385-3/sb76
http://refhub.elsevier.com/S1574-0137(20)30385-3/sb76
http://refhub.elsevier.com/S1574-0137(20)30385-3/sb76
http://refhub.elsevier.com/S1574-0137(20)30385-3/sb76
http://refhub.elsevier.com/S1574-0137(20)30385-3/sb76
http://refhub.elsevier.com/S1574-0137(20)30385-3/sb77
http://refhub.elsevier.com/S1574-0137(20)30385-3/sb77
http://refhub.elsevier.com/S1574-0137(20)30385-3/sb77
http://refhub.elsevier.com/S1574-0137(20)30385-3/sb77
http://refhub.elsevier.com/S1574-0137(20)30385-3/sb77

Harshvardhan GM, M.K. Gourisaria, M. Pandey et al. / Computer Science Review 38 (2020) 100285 29
[78] H. Zhang, V. Sindagi, V.M. Patel, Image de-raining using a conditional
generative adversarial network, IEEE Trans. Circuits Syst. Video Technol.
1 (2019) 1, http://dx.doi.org/10.1109/tcsvt.2019.2920407.

[79] D. Michelsanti, Z.H. Tan, Conditional generative adversarial networks for
speech enhancement and noise-robust speaker verification, 2017, arXiv
preprint arXiv:1709.01703.

[80] P. Shen, X. Lu, S. Li, H. Kawai, Conditional Generative Adversarial Nets
Classifier for Spoken Language Identification, INTERSPEECH, 2017, pp.
2814–2818.

[81] X. Huang, Y. Li, O. Poursaeed, J. Hopcroft, S. Belongie, Stacked generative
adversarial networks, in: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, 2017, pp. 5077-5086.

[82] I. Goodfellow, Generative adversarial networks NIPS tutorial, 2016, arXiv
preprint arXiv:1701.00160.

[83] B. Uria, M.A. Côté, K. Gregor, I. Murray, H. Larochelle, Neural au-
toregressive distribution estimation, J. Mach. Learn. Res. 17 (1) (2016)
7184–7220.

[84] M. Germain, K. Gregor, I. Murray, H. Larochelle, Made: Masked autoen-
coder for distribution estimation, in: International Conference on Machine
Learning, 2015, pp. 881–889.

[85] A.V.D. Oord, N. Kalchbrenner, K. Kavukcuoglu, Pixel recurrent neural
networks, 2016, arXiv preprint arXiv:1601.06759.

[86] B.J. Frey, G.E. Hinton, P. Dayan, Does the wake-sleep algorithm produce
good density estimators?, Adv. Neural Inf. Process. Syst. (1996) 661–667.

[87] B.J. Frey, Graphical Models for Machine Learning and Digital Communi-
cation, MIT Press, Cambridge, 1998.

[88] Y. Bengio, E. Laufer, G. Alain, J. Yosinski, Deep generative stochastic
networks trainable by backprop, in: International Conference on Machine
Learning, 2014, pp. 226–234.

[89] H. G.M. GenerativeModels, Github repository, 2020, https://github.com/
GM-git-dotcom/GenerativeModels.

[90] F.M. Harper, J.A. Konstan, ACM Trans. Interact. Intell. Syst. (TiiS) 5 (4)
(2019) 19.

[91] D. Dua, C. Graff, UCI Machine Learning Repository, University of California,
School of Information and Computer Science, Irvine, CA, 2019, http:
//archive.ics.uci.edu/ml.

[92] Y. LeCun, C. Cortes, C.J. Burges, MNIST Handwritten digit database, 2010.
[93] S. Deerwester, S.T. Dumais, G.W. Furnas, T.K. Landauer, R. Harshman,

Indexing by latent semantic analysis, J. Amer. Soc. Inf. Sci. 41 (6) (1990)
391–407.
[94] T. Hofmann, Probabilistic latent semantic indexing, in: Proceedings of
the 22nd Annual International ACM SIGIR Conference on Research and
Development in Information Retrieval, 1999, pp. 50-57.

[95] L. Hong, B.D. Davison, Empirical study of topic modeling in twitter, in:
Proceedings of the first workshop on social media analytics, 2010, pp.
80-88.

[96] J. Chuang, C.D. Manning, J. Heer, Termite: Visualization techniques for
assessing textual topic models. In Proceedings of the international working
conference on advanced visual interfaces, 2012, pp. 74–77.

[97] C. Sievert, K. Shirley, LDAvis: A method for visualizing and interpreting
topics. In Proceedings of the workshop on interactive language learning,
visualization, and interfaces, 2012, pp. 63–70.

[98] Q. Wu, C. Zhang, Q. Hong, L. Chen, Topic evolution based on LDA and
HMM and its application in stem cell research, J. Inf. Sci. 40 (5) (2014)
611–620, http://dx.doi.org/10.1177/0165551514540565.

[99] B.J.P. Hsu, J. Glass, J, Style & topic language model adaptation using HMM-
LDA, in: Proceedings of the 2006 Conference on Empirical Methods in
Natural Language Processing, 2006, pp. 373-381.

[100] A. Bansal, S. Chaudhary, S.D. Roy, A novel LDA and HMM-based technique
for emotion recognition from facial expressions, in: Multimodal Pattern
Recognition of Social Signals in Human-Computer-Interaction, 2013, pp.
19–26, http://dx.doi.org/10.1007/978-3-642-37081-6_3.

[101] H. Zhang, T. Xu, H. Li, S. Zhang, X. Wang, X. Huang, D.N. Metaxas,
Stackgan: Text to photo-realistic image synthesis with stacked generative
adversarial networks, in: Proceedings of the IEEE international conference
on computer vision, 2017, pp. 5907-5915.

[102] C. Zhang, Y. Peng, Stacking VAE and GAN for context-aware text-to-image
generation, in: IEEE Fourth International Conference on Multimedia Big
Data (BigMM), 2018, http://dx.doi.org/10.1109/bigmm.2018.8499439.

[103] A.B.L. Larsen, S.K. Sønderby, H. Larochelle, O. Winther, Autoencoding
beyond pixels using a learned similarity metric, 2015, arXiv preprint
arXiv:1512.09300.

[104] A. Makhzani, J. Shlens, N. Jaitly, I. Goodfellow, B. Frey, Adversarial
autoencoders, 2015, arXiv preprint arXiv:1511.05644.

[105] A.V. Prosvetov, GAN for recommendation system, J. Phys. Conf. Ser. 1405
(1) (2019) 012005.

[106] Y. Li, K. Swersky, R. Zemel, Generative moment matching networks, in:
International Conference on Machine Learning, 2015, pp. 1718–1727.

[107] S. Nowozin, B. Cseke, R. Tomioka, F-gan: Training generative neural
samplers using variational divergence minimization, Adv. Neural Inf.
Process. Syst. (2016) 271–279.

[108] L. Dinh, J. Sohl-Dickstein, S. Bengio, Density estimation using real nvp,
2016, arXiv preprint arXiv:1605.08803.

http://dx.doi.org/10.1109/tcsvt.2019.2920407
http://arxiv.org/abs/1709.01703
http://refhub.elsevier.com/S1574-0137(20)30385-3/sb80
http://refhub.elsevier.com/S1574-0137(20)30385-3/sb80
http://refhub.elsevier.com/S1574-0137(20)30385-3/sb80
http://refhub.elsevier.com/S1574-0137(20)30385-3/sb80
http://refhub.elsevier.com/S1574-0137(20)30385-3/sb80
http://arxiv.org/abs/1701.00160
http://refhub.elsevier.com/S1574-0137(20)30385-3/sb83
http://refhub.elsevier.com/S1574-0137(20)30385-3/sb83
http://refhub.elsevier.com/S1574-0137(20)30385-3/sb83
http://refhub.elsevier.com/S1574-0137(20)30385-3/sb83
http://refhub.elsevier.com/S1574-0137(20)30385-3/sb83
http://refhub.elsevier.com/S1574-0137(20)30385-3/sb84
http://refhub.elsevier.com/S1574-0137(20)30385-3/sb84
http://refhub.elsevier.com/S1574-0137(20)30385-3/sb84
http://refhub.elsevier.com/S1574-0137(20)30385-3/sb84
http://refhub.elsevier.com/S1574-0137(20)30385-3/sb84
http://arxiv.org/abs/1601.06759
http://refhub.elsevier.com/S1574-0137(20)30385-3/sb86
http://refhub.elsevier.com/S1574-0137(20)30385-3/sb86
http://refhub.elsevier.com/S1574-0137(20)30385-3/sb86
http://refhub.elsevier.com/S1574-0137(20)30385-3/sb87
http://refhub.elsevier.com/S1574-0137(20)30385-3/sb87
http://refhub.elsevier.com/S1574-0137(20)30385-3/sb87
http://refhub.elsevier.com/S1574-0137(20)30385-3/sb88
http://refhub.elsevier.com/S1574-0137(20)30385-3/sb88
http://refhub.elsevier.com/S1574-0137(20)30385-3/sb88
http://refhub.elsevier.com/S1574-0137(20)30385-3/sb88
http://refhub.elsevier.com/S1574-0137(20)30385-3/sb88
https://github.com/GM-git-dotcom/GenerativeModels
https://github.com/GM-git-dotcom/GenerativeModels
https://github.com/GM-git-dotcom/GenerativeModels
http://refhub.elsevier.com/S1574-0137(20)30385-3/sb90
http://refhub.elsevier.com/S1574-0137(20)30385-3/sb90
http://refhub.elsevier.com/S1574-0137(20)30385-3/sb90
http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml
http://refhub.elsevier.com/S1574-0137(20)30385-3/sb92
http://refhub.elsevier.com/S1574-0137(20)30385-3/sb93
http://refhub.elsevier.com/S1574-0137(20)30385-3/sb93
http://refhub.elsevier.com/S1574-0137(20)30385-3/sb93
http://refhub.elsevier.com/S1574-0137(20)30385-3/sb93
http://refhub.elsevier.com/S1574-0137(20)30385-3/sb93
http://refhub.elsevier.com/S1574-0137(20)30385-3/sb96
http://refhub.elsevier.com/S1574-0137(20)30385-3/sb96
http://refhub.elsevier.com/S1574-0137(20)30385-3/sb96
http://refhub.elsevier.com/S1574-0137(20)30385-3/sb96
http://refhub.elsevier.com/S1574-0137(20)30385-3/sb96
http://refhub.elsevier.com/S1574-0137(20)30385-3/sb97
http://refhub.elsevier.com/S1574-0137(20)30385-3/sb97
http://refhub.elsevier.com/S1574-0137(20)30385-3/sb97
http://refhub.elsevier.com/S1574-0137(20)30385-3/sb97
http://refhub.elsevier.com/S1574-0137(20)30385-3/sb97
http://dx.doi.org/10.1177/0165551514540565
http://dx.doi.org/10.1007/978-3-642-37081-6_3
http://dx.doi.org/10.1109/bigmm.2018.8499439
http://arxiv.org/abs/1512.09300
http://arxiv.org/abs/1511.05644
http://refhub.elsevier.com/S1574-0137(20)30385-3/sb105
http://refhub.elsevier.com/S1574-0137(20)30385-3/sb105
http://refhub.elsevier.com/S1574-0137(20)30385-3/sb105
http://refhub.elsevier.com/S1574-0137(20)30385-3/sb106
http://refhub.elsevier.com/S1574-0137(20)30385-3/sb106
http://refhub.elsevier.com/S1574-0137(20)30385-3/sb106
http://refhub.elsevier.com/S1574-0137(20)30385-3/sb107
http://refhub.elsevier.com/S1574-0137(20)30385-3/sb107
http://refhub.elsevier.com/S1574-0137(20)30385-3/sb107
http://refhub.elsevier.com/S1574-0137(20)30385-3/sb107
http://refhub.elsevier.com/S1574-0137(20)30385-3/sb107
http://arxiv.org/abs/1605.08803

	A comprehensive survey and analysis of generative models in machine learning
	Introduction
	Gaussian mixture models
	Hidden Markov models
	Latent Dirichlet allocation
	Boltzmann machines
	Restricted Boltzmann machine
	Deep belief networks
	Deep Boltzmann machines

	Variational autoencoders
	Autoencoders
	Variational autoencoders

	Generative adversarial networks
	Deep convolutional GANs (DCGAN)
	Fully connected and convolutional GANs (FCC-GAN)
	Conditional GANs (CGAN)
	Stack GANs (SGAN)

	Analysis and discussion
	Analysis of deep generative models
	Implementation of Restricted Boltzmann Machine
	Implementation of deep belief network
	Implementation of Deep Boltzmann Machine
	Implementation of variational autoencoder
	Implementation of generative adversarial network

	Analysis of pure ML-based generative models
	Implementation of Gaussian mixture models
	Implementation of latent Dirichlet allocation
	Implementation of hidden Markov models

	Comparisons
	Difficulty of analysing generated samples
	Future directions

	Declaration of competing interest
	
	References

