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Auto-associative neural networks (“autoencoders”) present a powerful nonlinear dimensionality
reduction technique to mine data-driven collective variables from molecular simulation trajectories.
This technique furnishes explicit and differentiable expressions for the nonlinear collective variables,
making it ideally suited for integration with enhanced sampling techniques for accelerated exploration
of configurational space. In this work, we describe a number of sophistications of the neural network
architectures to improve and generalize the process of interleaved collective variable discovery and
enhanced sampling. We employ circular network nodes to accommodate periodicities in the collective
variables, hierarchical network architectures to rank-order the collective variables, and generalized
encoder-decoder architectures to support bespoke error functions for network training to incorporate
prior knowledge. We demonstrate our approach in blind collective variable discovery and enhanced
sampling of the configurational free energy landscapes of alanine dipeptide and Trp-cage using an
open-source plugin developed for the OpenMM molecular simulation package. Published by AIP
Publishing. https://doi.org/10.1063/1.5023804

I. INTRODUCTION

One of major limitations of molecular dynamics (MD)
simulations is the short time scales accessible to simulation,
compared to the time scales required to surmount free energy
barriers present in configurational space.1–3 This causes the
simulated system to become easily trapped within local min-
ima, leading to poor sampling of the configurational space,
breaking ergodicity, and returning biased estimates of ther-
modynamic averages.1–5 To ameliorate these difficulties, a
multitude of enhanced sampling methods have been proposed
to facilitate escape from local minima,4,5 falling broadly into
two categories: tempering approaches in which the system
Hamiltonian is modified to assist escape and collective variable
(CV) biasing approaches in which the sampling is acceler-
ated along predefined directions in configurational space.5,6

CV biasing approaches are typically more computationally
efficient than tempering techniques, but their success is con-
tingent on the availability of CVs with which to adequately
resolve the important metastable configurations of the system
and the barriers between them, thereby facilitating efficient
barrier crossing and sampling of the local minima.5,6 Exam-
ples of CV biasing methods include umbrella sampling (US),7

metadynamics,8–10 hyperdynamics,11 temperature acceler-
ated molecular dynamics (TAMD)12 also known as driven

a)E-mail: alf@illinois.edu

adiabatic free energy dynamics (d-AFED),13 adaptive biasing
force (ABF),14 and adiabatic free energy dynamics (AFED).15

Appropriate CVs may be inferred by human intuition for
simple systems (e.g., backbone dihedrals in small peptides
in a vacuum16 and the radius of gyration for short poly-
mer chains17), but systematic techniques are required to infer
CVs for generic systems where appropriate choices are not
obvious.

Dimensionality reduction or manifold learning techniques
present a means to systematically identify a small number
of CVs parameterizing the molecular motions through con-
figurational space by analyzing high-dimensional molecular
simulation trajectories.4,13,18–21 These techniques exploit the
fact that interactions between system degrees of freedom
reduce the effective dimensionality of the system far below
the ambient dimensionality in which the system dynamics
are formulated.4,17,18 In the case of molecular systems whose
behavior can be treated by a classical mechanical approxi-
mation, the ambient dimensionality is, removing translational
and rotational invariances, (3N � 6), where N is the num-
ber of atoms in the system. Applications of a diversity of
linear and nonlinear dimensionality reduction techniques to
molecular simulations of peptides and polymers have deter-
mined low-dimensional parameterizations in a handful of
CVs that provide adequate parameterizations of the accessible
configurational space.4,17,18,21–32

Linear dimensionality reduction techniques, such as prin-
cipal component analysis (PCA)25,28,33 and multidimensional
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scaling (MDS),34 are straightforward to apply and furnish an
explicit linear transformation from the input molecular coor-
dinates to the low-dimensional CVs. The availability of an
explicit expression for the CVs in terms of the atomic coor-
dinates is valuable both in assigning physical interpretation
to the discovered coordinates and in performing accelerated
sampling along the CVs. The restriction to linear transforma-
tions can prove overly restrictive for molecular folding that
are characterized by nonlinear many-body couplings between
the molecular degrees of freedom, and the low-dimensional
embeddings discovered by linear techniques are unable to
discover and parameterize important nonlinear modes. Ker-
nel techniques permit the user to preprocess the data via
nonlinear transformations,35 but the definition of appropri-
ate kernels suitable for molecular systems and valid over the
complete molecular configurational space is a challenge. Non-
linear dimensionality reduction techniques, such as locally
linear embedding (LLE),36,37 Isomap,26,38–40 and diffusion
maps (dMaps),17,31,41–43 are more powerful methods capa-
ble of discovering nonlinear CVs that typically provide a
more fundamental and parsimonious parameterization of the
molecular motions. The price of this increased mathemati-
cal flexibility is the absence of an explicit mapping from
the molecular coordinates to the nonlinear CVs.19,21 As a
result, accelerated sampling in the CVs must be performed
indirectly using proxy order parameters,31 functional fits,44

basis function expansions,1,40,45,46 or by judicious initializa-
tion of unbiased simulations at the edge of the nonlinear
embedding.29,30,43

We recently proposed the use of auto-associative artifi-
cial neural networks (ANNs) (“autoencoders”) to recover CVs
from molecular simulation trajectories.6 This approach stands
apart from existing approaches in that it discovers nonlinear
CVs for which it furnishes explicit and differentiable map-
pings from the molecular coordinates. Accordingly, it is the
only nonlinear dimensionality reduction technique reported
to date that furnishes nonlinear CVs along which acceler-
ated sampling can be directly conducted. We demonstrated
this approach in applications to molecular simulations of two
short peptides, establishing an iterative protocol interleaving
successive rounds of nonlinear CV discovery and accelerated
sampling in these CVs. The capacity to systematically dis-
cover, parameterize, and sample along the CVs parameterizing
the important molecular motions provides a highly efficient
and automated accelerated sampling approach that surgically
targets computational effort along the important directions in
configurational space.

In the present work, we detail a number of sophistications
of the neural network architecture using circular architectures
to support the discovery of periodic CVs and handle nonlin-
ear embeddings with closed topologies, generalized encoder-
decoder architectures to support tailored error functions that
may be rationally designed to incorporate prior molecular
understanding, and hierarchical architectures to rank order the
discovered CVs in terms of importance in the molecular recon-
struction and to stabilize their discovery. These advances build
upon our initial proof-of-principle of our approach to render it
more powerful and generally applicable to diverse molecular
systems. The structure of this paper is as follows. In Sec. II,

we introduce the theoretical and algorithmic underpinnings of
autoencoder CV discovery, detail our new technical and math-
ematical advances, describe how to use the discovered CVs
for accelerated sampling, and provide details of the molec-
ular simulations of alanine dipeptide and Trp-cage that we
use to demonstrate and benchmark our techniques. In Sec. III,
we describe our architectural and algorithmic advances to
handle periodicities in the nonlinear CV manifold, support
tailored error functions incorporating prior molecular under-
standing, and impose rank ordering on the discovered CVs.
In Sec. IV, we present our conclusions and outlook for future
work.

II. METHODS
A. Nonlinear dimensionality reduction
using autoencoders

We have previously described the use of autoencoders
for nonlinear dimensionality reduction6 and provide here an
abbreviated introduction. We follow this with a discussion
of special considerations for the elimination of translational
and rotational degrees of freedom and sophistications in the
network architecture to handle closed topologies in the non-
linear embedding due to periodic CVs and the imposition of
hierarchical rank ordering on the CVs.

1. Autoencoding artificial neural networks

Autoencoders are a class of artificial neural networks
(ANNs) possessing an autoencoding topology that is designed
to perform nonlinear dimensionality reduction.47–53 The
autoencoder consists of two parts: an encoder block that
performs the nonlinear projection of the input data into a
low-dimensional subspace and a decoder block that attempts
to reconstruct the input data from the low-dimensional pro-
jection. By training the network to optimally reconstruct its
own input over an ensemble of training examples, the ANN
learns a low-dimensional nonlinear projection that preserves
the important features of the data and from which the high-
dimensional state of the system can be approximately recon-
structed. In the present context, the training data are snap-
shots from a molecular simulation trajectory and the net-
work is trained to discover a projection into a small number
of CVs formed from nonlinear combinations of the atomic
coordinates from which the molecular configuration can be
approximately reconstructed. Importantly, CV discovery in
this manner is completely unsupervised—the ANN requires
only the atomic coordinates of the molecular system and
a metric with which to quantify the quality of the ANN
reconstruction.

An example of a typical 5-layer feedforward, fully con-
nected, D–G–K–G–D autoencoder is presented in Fig. 1. The
number of input and output nodes D is fixed by the dimension-
ality of the input data, here the dimensionality of the molecular
simulation trajectory z ∈ RD and its approximate reconstruc-
tion by the trained network ẑ ∈ RD. The bottleneck layer
contains the low-dimensional projection into the nonlinear
CVs ξ ∈ RK to be discovered by the autoencoder. The dimen-
sionality of the low-dimensional projection is controlled by the
number of bottleneck nodes K. The nonlinear projection from
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FIG. 1. An autoencoder with a D–G–K–G–D
= 3-6-2-6-3 topology. The encoding portion of the
network comprising the first three layers processes
the input data z ∈ RD through a hidden layer and
generates a low-dimensional nonlinear projection
ξ = Θencode(z) ∈ RK within the bottleneck layer. The
decoding portion of the network comprising the last
three layers processes the low-dimensional projection
through the second hidden layer to attempt to optimally
reconstruct the input data ẑq = Θdecode(ξq) ∈ RD. Each
node takes as input a bias plus a weighted sum of outputs
from the nodes in the previous layer and generates its
own output via an activation function. The weights and
biases are tuned by training the network over a series of
training examples to minimize the reconstruction error
of its autoencoding ẑq = (Θdecode ◦ Θencode)zq. Image
was constructed using a code downloaded from http://
www.texample.net/tikz/examples/neural-network with
the permission of the author Kjell Magne Fauske.

the input data in the input layer into the low-dimensional CVs
contained in the bottleneck layer is accomplished through the
first hidden layer ξ = Θencode(z). The approximate reconstruc-
tion of the input data from the low dimensional projection is
accomplished through the second hidden layer and generated
in the output layer ẑq = Θdecode(ξq). The network output may
therefore be written as ẑq = (Θdecode ◦ Θencode)zq, encapsulat-
ing an autoencoding of the network input. By convention, both
hidden layers contain the same number of nodes G. More gen-
eral autoencoder topologies are possible containing multiple
hidden layers each of which may contain different numbers of
nodes and even different connectivities.

Training of the network amounts to adjusting the network
parameters to optimize the reconstruction fidelity of the input
data. Each node k in layer i of the network operates on its
input x(i)

k via an activation function f (i) to produce an output

y(i)
k = f (i)

(
x(i)

k

)
. The mathematical form of the activation func-

tion is typically the same for all nodes in a particular layer and
takes the form of a linear function for the input layer (i.e., the
identify function) and a hyperbolic tangent or sigmoid function
for all other layers.54 Nonlinear activation functions endow the
network with the mathematical flexibility and power to approx-
imate generic input-output relations,47,48 and their smoothness
assures that the encoding discovered by the network is con-
tinuous and possesses well-defined derivatives. The input to
each node in a fully connected, feedforward topology is a
weighted sum of the outputs of the nodes in the previous layer
x(i)

k = b(i)
k +

∑
j w

(i−1)
jk y(i−1)

j , where w(i−1)
jk is the weight of the

connection between node j in layer (i � 1) and node k in layer
i and b(i)

k is the bias to node k in layer i. Training the network
amounts to optimizing the weights and biases to minimize the
reconstruction error over a training set of q = 1. . .Q training
examples,

E
(
{w i

jk , bi
k }; {zq}

)
=

Q∑
q=1




zq − ẑq





2
+ Γ

(
{w i

jk , bi
k }

)
=

Q∑
q=1




zq − (Θdecode ◦ Θencode)zq





2

+ Γ
(
{w i

jk , bi
k }

)
, (1)

where Γ
(
{w i

jk , bi
k }

)
is a regularization term typically chosen to

be of the formΓ
(
{w i

jk , bi
k }

)
=

∑
i,j,k λi

(
w(i)

jk

)2
in order to control

the magnitude of the network weights during training.50,54 In
our applications, we find the regularization term to be unneces-
sary and set λi = 0, ∀i. Training is conducted using mini-batch
stochastic gradient descent with momentum.55,56 To prevent
overfitting, we use a randomly selected 80% portion of our
data for training and 20% for validation, with training stopped
when the validation error ceases to improve.

An appropriate number of bottleneck nodes defining the
typically unknown a priori dimensionality of the nonlinear
projection can be determined by computing the fraction of
variance explained (FVE) by the reconstructed output,

FVE = 1 −

∑Q
q=1

(
zq − ẑq

)2

∑Q
q=1

(
zq − z̄q

)2
, (2)

where z̄ is the mean input vector, and looking for the existence
of a knee in the FVE as a function of K.6 We detect the presence
of a knee using the L-method of Salvador and Chan.57 The
number of hidden nodes is a tunable parameter that can be set
by cross-validation, but we find G ≈ 2D to generally provide
satisfactory network performance.

Training of the network simultaneously tunes the weights
of all five layers of the network to optimally autoencode the
training examples. After training is complete, only the first
three layers of the autoencoder defining the encoding mapping
ξ = Θencode(z) are required to perform nonlinear projection of
new input data. Crucially, the mapping Θencode furnished by
the trained network is an explicit and differentiable function
of the molecular coordinate input data and as such can be
straightforwardly integrated with standard CV biasing tech-
niques that require this function to evaluate biasing energies
(Monte Carlo) or forces (molecular dynamics).

2. Elimination of translational and rotational
invariance with data augmentation

In the study of molecules in isotropic media, we gener-
ally wish to discover a nonlinear projection invariant to rigid
translation and rotation. In our current applications, we elect
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to disregard solvent degrees of freedom either by employ-
ing an implicit solvent model or by treating the explicit sol-
vent coordinates indirectly through their effect on the solute
configurational ensemble.6,17 Exploration of techniques to
represent these neglected degrees of freedom and incorpo-
rate them into the nonlinear CV projection is an important
avenue of future inquiry.21,58 Representing molecular config-
urations with respect to an internal coordinate frame such as
backbone dihedral angles naturally eliminates these invari-
ances,59–61 but can present problems in training due to the
strong dependence of the reconstruction error on the position
of the internal degree of freedom within the molecule.6 An
alternative approach represents the molecular configurations
in the lab frame of atomic Cartesian coordinates and straight-
forwardly eliminates translational invariances by subtracting
out the molecular center of mass to pass mean-centered con-
figurations {zq} to the autoencoder. Elimination of rotational
invariances can be accomplished using a data augmentation
technique that we have previously described.6 Each of the
Q mean-centered training example zq is subjected to N ran-
dom 3D rotations, and we train the autoencoder to produce
the same reconstructed output regardless of molecular ori-
entation. In this manner, we explicitly train the autoencoder
to discover CVs invariant to rigid rotations. Mathematically,
this requires that we replace the objective function in Eq. (1)
with

E
(
{w i

jk , bi
k }; {zq}

)
=

T∑
t=1

Q∑
q=1

N∑
n=1




L
(
Rn

(
zq

)
, zt

ref

)
− ẑqn





2

+ Γ
(
{w i

jk , bi
k }

)
=

T∑
t=1

Q∑
q=1

N∑
n=1




L
(
zq, zt

ref

)
− ẑqn





2

+ Γ
(
{w i

jk , bi
k }

)
, (3)

where Rn is a 3D rotation selected uniformly at random, zt
ref

is one of t = 1. . .T reference configurations, L
(
zq, zt

ref

)
is the

optimal rotational alignment of input configuration zq to refer-
ence configuration zt

ref , and ẑqn is the output of the autoencoder

when the input is Rn

(
zq

)
. It is necessary to choose a refer-

ence configuration against which the input configuration is
aligned in order to make sure that all of the random rota-
tions are compared against a consistent rigid rotation of the
molecule. If necessary, the effect of this arbitrary choice of ref-
erence configuration can be mitigated by employing t = 1. . .T
randomly selected choices of reference. In practice, we find
N = 64 and T = 1 to provide satisfactory results. Optimal rota-
tional alignments are efficiently computed using the Kabsch
algorithm.62

3. Learning periodic CVs using circular autoencoders

A known deficiency of traditional autoencoders is an
inability to represent periodic CVs within a single node of
the bottleneck layer. This can present difficulties in defining
proper embeddings of low-dimensional manifolds possessing
closed topologies (e.g., spheres, cylinders, and tori). Mathe-
matically, the bottleneck layer lacks the expressive power to
represent periodicities within one or more of the ξ = {ξk }

K
k=1,

even though they may be supported by the data. One possible
solution is to increase the number of nodes in the bottleneck
layer to provide additional CVs with which to represent these
periodicities, in the same manner that the unit circle can be
properly parameterized by the two (non-periodic) Cartesian
coordinates. However, this approach is unsatisfactory in that
it artificially increases the dimensionality of the nonlinear
embedding to accommodate a mathematical deficiency of the
network structure and inefficient in that it requires accelerated
sampling to be performed in a higher-dimensional space than
is necessary. A more elegant technique is to modify the net-
work topology to represent each (possibly periodic) CV with
a pair of coupled bottleneck nodes with circular activation
functions.49,50,63 Specifically, an embedding into S possibly
periodic CVs is represented by K = 2S paired bottleneck nodes.
Each pair of nodes possesses an activation function that con-
strains their outputs to be [cos(ξ i), sin(ξ i)] pairs on the unit
circle. Letting xip and xiq denote the inputs to the two circular
bottleneck nodes p and q in pair i, the respective outputs are
given by

yip =
xip√(

xip

)2
+

(
xiq

)2
= cos(ξi),

yiq =
xiq√(

xip

)2
+

(
xiq

)2
= sin(ξi).

(4)

Figure 2 shows an example of a 5-layer circular autoencoder
with two pairs of circular nodes in the bottleneck layer.

4. Learning hierarchical CVs using hierarchical
autoencoders

A second deficiency of traditional autoencoders is the
absence of rank ordering among the identified CVs, in the
sense that ξ1 explains the most variance in the simulation

FIG. 2. A circular autoencoder with a D–G-(K = 2S)-G–D = 4-8-(2 × 2)-8-
4 topology. Each possibly periodic CV is represented by a pair of coupled
nodes in the bottleneck layer whose output is constrained to be a [sin(ξ i),
cos(ξ i)] pair. The two pairs of bottleneck nodes are indicated within dashed
rectangular boxes. Image was constructed using code downloaded from
http://www.texample.net/tikz/examples/neural-network with the permission
of the author Kjell Magne Fauske.
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data, ξ2 explains the second most, and so on. A hierar-
chical ordering is desirable from a physical perspective in
both quantifying the relative importance of the molecular
motions parameterized by each CV within the molecular
simulation trajectory. It is also mathematically desirable in
stabilizing the order in which the CVs are recovered. Tra-
ditional autoencoders treat all CVs equivalently (“symmetric
learning”)50 such that there exist a multitude of equivalent
low-dimensional embeddings formed from different orderings
and linear combinations of the identified CVs. Although each
description is equally valid, this democracy of representation
can introduce difficulties in assessing when the CV recov-
ery process has converged. Scholz and Vigário introduced
a means to hierarchically order the CVs using hierarchical
autoencoders employing a hierarchical error function of the
form49,50

EH = E1 + E1,2 + E1,2,3 + · · · + E1,2,...,(K−1),K , (5)

where E1 is the reconstruction error when the output is recon-
structed using only ξ1, E1,2 is the reconstruction error when
the output is reconstructed using {ξ1, ξ2}, and so on. Mathe-
matically, this error function minimizes the sum of reconstruc-
tion errors resulting from the autoencoder outputs generated
from each of the (k = 1. . .K)-dimensional nonlinear projec-
tions and therefore leads the network to discover an ordered
set of CVs that well parameterize the system within all K
subspaces. As such, we may approximately interpret ξ1 as
the single CV that best parameterizes the system in a 1D
nonlinear projection, {ξ1, ξ2} as the pair of CVs that best
parameterize the system in a 2D projection, and so on. It
is also possible to consider weighted sums of the K sub-
space error functions that lend differential weights to particular
subspaces.49

Multiple network topologies supporting the hierarchical
error function are possible, and we employ a slightly more
general variant than that originally proposed by Scholz and
co-workers.49,50 As illustrated in the neural network block
diagram in Fig. 3, we employ a hierarchical autoencoder topol-
ogy that possesses a common encoder—here projecting into
a K = 3-dimensional nonlinear subspace—and independent
decoders—here generating output reconstructions from the
1, 2, and 3-dimensional subspaces spanned by ξ1, (ξ1, ξ2),
and (ξ1, ξ2, ξ3), respectively. The output layers correspond-
ing to each of these independent decoders provide the error
functions E1, E1,2, and E1,2,3 required by Eq. (5), and net-
work training proceeds by simultaneous optimization of the
encoder and three decoder weights and biases to minimize
EH = E1 + E1,2 + E1,2,3. Once training is complete, only the sin-
gle shared encoder is required to furnish the expression for the
K-dimensional nonlinear projection ξ = Θencode(z) ∈ RK . In
principle, the hierarchical and circular autoencoder topologies
can be combined to form hierarchical autoencoders containing
a circular bottleneck layer.

B. On-the-fly CV discovery and enhanced sampling

The data-driven CVs determined by the autoencoder may
then be employed in enhanced sampling schemes and inform
an iterative protocol to comprehensively sample configura-
tional phase space.

FIG. 3. Block diagram of a hierarchical autoencoder employing K = 3 bot-
tleneck nodes containing CVs (ξ1, ξ2, ξ3). The network possesses a single
shared encoder and three independent decoders each of which generate their
reconstructions of the input data from the 1-, 2-, and 3-dimensional subspaces
spanned by ξ1, (ξ1, ξ2), and (ξ1, ξ2, ξ3), respectively. The network is trained
by minimizing the hierarchical error function composed from the sum of the
error functions for each decoder EH = E1 + E1,2 + E1,2,3. The CVs are hier-
archically ordered and may be approximately interpreted such that ξ1 is the
single CV that best parameterizes the system in a 1D nonlinear projection,
(ξ1, ξ2) is the pair that best parameterizes the system in a 2D projection,
and (ξ1, ξ2, ξ3) is the triplet that best parameterizes the system in a 3D
projection.

1. Enhanced sampling in the autoencoder CVs

The chief advantage of autoencoders over other non-
linear dimensionality reduction methodologies is that it fur-
nishes explicit and differentiable mappings for the CVs as
a function of the molecular coordinates and trained network
weights, biases, and activation functions ξ =Θencode(z). These
expressions can then be straightforwardly implemented within
standard enhanced sampling techniques to perform CV bias-
ing.4,5 Specifically, the unbiased system Hamiltonian H(z)
may be supplemented with artificial biasing potentials applied
directly in the discovered CVs V (ξ(z)) to generate a bias-
augmented Hamiltonian E(z) = H(z) + V (ξ(z)). In Monte
Carlo sampling, the bias is effected by accepting or rejecting
moves according to the bias-augmented energy. In molecular
dynamics, first derivatives may be taken with respect to the
atomic coordinates z(i) of each atom i to compute the unbi-
ased and biased forces acting on each atom f i(z) = −∇z(i) E(z)
= −∇z(i) H(z) − ∇z(i) V (ξ(z)) = fU

i (z) + fB
i (z). The expressions

for the biasing forces are rather ugly and unwieldy, but as we
have previously detailed, are straightforwardly computed by
repeated application of the chain rule.6

In this work, we elect to perform biasing using umbrella
sampling by depositing a series of harmonic umbrella poten-

tials V (ξ) =
∑K

k=1
1
2 κk

(
ξk − ξ

0
k

)2
to advance the exploration

frontier, where κk is the force constant and ξ0
k is the cen-

ter of the harmonic potential in ξk .7 An estimate for the
K-dimensional unbiased free energy surface (FES) F(ξ)
may be recovered from the biased trajectories by solv-
ing the weighted histogram analysis method (WHAM)
equations.64 We employ the freely available BayesWHAM
implementation to solve the WHAM equations, quantify
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uncertainties, and project of the unbiased FES into order
parameters other than those in which biased sampling was
conducted.65

2. MESA: Interleaved CV discovery and biased
sampling

Accelerated sampling leads to improved exploration of
the configurational space. Appropriate CVs describing the
molecular motions in this expanded space will typically dif-
fer from those computed by the autoencoder from the initial
simulation trajectory. Accordingly, the CVs must be updated
prior to performing any additional rounds of enhanced sam-
pling. This “chicken and egg” problem leads naturally to an
iterative sampling procedure interleaving successive rounds
of autoencoder CV discovery and biased sampling, which
we have termed Molecular Enhanced Sampling with Autoen-
coders (MESA).6 The iterative MESA procedure comprises
the following six steps and is illustrated schematically in
Fig. 4.

Step 1—Generate initial data. Generate initial training tra-
jectory for initial CV estimation. These data may come
from unbiased simulation, parallel tempering runs, or
biased calculations conducted in intuited order parameters.

Step 2—Autoencoder CV discovery. Apply appropriate
autoencoder architecture (traditional, circular, and hierar-
chical) and error function to discover CVs by training over
all molecular configurations harvested to date. Determine
an appropriate number of bottleneck nodes K by computing
the FVE curve, and an appropriate number of hidden nodes
G using cross-validation or the G ≈ 2D rule-of-thumb. The
number of input and output nodes D is set by the number
of atoms in the system.

Step 3—Boundary detection. Employ the trained autoen-
coder to project all molecular snapshots collected to date
into the K-dimensional manifold spanned by the cur-
rent CVs. Identify the (K-1)-dimensional boundary of the
explored region to define the exploration frontier. Here we
employ a grid-based procedure based on the graph Lapla-
cian to identify poorly sampled grid cells contiguous to well
sampled cells,6 although more sophisticated approaches
are possible.66–68

Step 4—Accelerated sampling. Deposit harmonic umbrella
potentials within the boundary cells identified in the pre-
vious step and conduct biased sampling runs to advance
the exploration frontier. Appropriate values of the har-
monic force constants can be strongly system and location
dependent and may be tuned by trial-and-improvement.

Step 5—Convergence assessment. The iterative procedure
is terminated when biased sampling ceases to lead to
substantial new exploration of configurational space. We
assess this by testing that the CVs have stabilized—up to

any trivial sign changes or rigid rotations—and the explo-
ration frontier has remained stationary between the latest
two iterations. If convergence is achieved, then we pro-
ceed to recover an estimate for the unbiased FES supported
by the converged nonlinear CVs. Otherwise, we perform
additional iterations of CV discovery and biased sampling.

Step 6—FES estimation. Conduct umbrella sampling runs
over the entire explored region parameterized by the con-
verged CVs ξ . Estimate the unbiased low-dimensional
FES F(ξ) supported by these order parameters by solv-
ing the WHAM equations64 and compute projections of
the unbiased FES into arbitrary order parameters F(ζ ) by
reweighting.65

C. Molecular dynamics simulations

We employ two short peptides as biomolecular test sys-
tems for our new network architectures and error functions:
alanine dipeptide and Trp-cage (Fig. 5). All molecular sim-
ulations were performed using the OpenMM 7.0 molecular
dynamics package.70–72

1. Alanine dipeptide

Alanine dipeptide (N-acetyl-L-alanine-N ′-methylamide,
AcAlaNHMe) in vacuum was simulated using the Amber99sb
force field74 with bond lengths fixed using the LINCS algo-
rithm.75 Calculations were performed at T = 300 K using
a Langevin integrator with a friction coefficient of 1 ps�1

and a 2 fs time step.76 Coulomb and Lennard-Jones inter-
actions were computed in real space with no cutoff and
Lennard-Jones parameters between non-identical atoms cal-
culated using the Lorentz-Berthelot combining rules.77 The
initial training data were generated by conducting a 800 ps
unbiased calculation from which we collected snapshots every
1 ps. Accelerated sampling was conducted by deploying
10-20 umbrella calculations for 100 ps saving snapshots every
1 ps in each round of MESA. Harmonic force constants of
κ = 3000 kJ/mol (unit of CV)2 were employed in each CV
when using traditional autoencoder architectures and κ = 50
kJ/mol (unit of CV)2 when employing circular autoencoders.
All calculations were performed on Intel i7-5820K chips (6-
cores, 15 MB Cache, 3.8 GHz overclocked), achieving exe-
cution speeds of ∼6 µs/day.core for unbiased simulations and
∼1.3 µs/day.core for biased calculations employing Cartesian
coordinates as autoencoder inputs and∼3 µs/day.core employ-
ing internal coordinate representations based on sin/cos pairs
of the backbone dihedral angles.

2. Trp-cage

Trp-cage (NLYIQWLKDGGPSSGRPPPS; PDB ID:
1L2Y78,79) was simulated using the Amber03 force field74

in implicit solvent treated with the Onufriev-Bashford-Case
GBSA model80 using the GBOBCII parameters employing

FIG. 4. Schematic flowchart of the iter-
ative MESA protocol interleaving CV
discovery and accelerated sampling.
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FIG. 5. Peptide test systems. (a) Alanine dipeptide (N-acetyl-L-alanine-N′-methylamide, AcAlaNHMe). The φ, ψ, θ, and ζ backbone dihedral angles are
indicated by arrows. (b) Trp-cage (NLYIQWLKDGGPSSGRPPPS; PDB ID: 1L2Y). The three main secondary structure elements are color coded: N-terminal
α-helix (red), 310 helix (yellow), and C-terminal polyproline region (blue), and the hydrophobically caged Trp-6 side chain explicitly visualized. The black
arrows define the dihedral angle θ1,9,14,20 linking the Cα atoms of Asn-1 (A), Asp-9 (B), Ser-14 (C), and Ser-20 (D), which measures the global molecular
chirality. The two yellow lines indicate the distance d1,11 between the Cα atoms of Asn-1 (A) and Gly-11 (E) and the distance d11,20 between Cα atoms of
Ser-20 (D) and Gly-11 (E). The vertical shift defined by (d11,20 � d1,11) provides a measure of the relative position of the termini with respect to the center of
the molecule. All molecular renderings are constructed using VMD.73

solute and solvent dielectrics of 1.0 and 78.5. Simulations were
performed at T = 300 K by integrating the equations of motion
using a leapfrog Verlet scheme with a 2 fs time step and Ander-
sen thermostat.81 The LINCS algorithm was used to fix all H
atom bond lengths. Coulomb interactions were computed with
a 5 nm cutoff. Lennard-Jones interactions were computed with
a 5 nm cutoff and employing Lorentz-Berthelot combining
rules to compute interaction parameters between non-identical
atoms.77 The initial training data were generated from three
10 ns unbiased simulations from which snapshots were har-
vested every 20 ps. Accelerated sampling was conducted by
deploying 10-20 umbrella calculations for 2 ns saving con-
figurations every 20 ps in each round of MESA. Harmonic
force constants of κ = 2000 kJ/mol (unit of CV)2 were used in
each CV. Simulations were conducted on GeForce GTX 960
GPU cards, achieving execution speeds of ∼1100 ns/day.core
and ∼810 ns/day.core for unbiased and biased calculations,
respectively.

III. RESULTS AND DISCUSSION

We report three architectural and error function innova-
tions in autoencoder CV discovery. First, we detail the use
of circular autoencoders to efficiently parameterize nonlinear
manifolds with closed topologies resulting from periodicities
in the discovered CVs. Second, we describe how prior knowl-
edge about the molecular folding may be incorporated into
the error function to direct CV determination and accelerate
phase space exploration. Third, we detail the use of hierar-
chical autoencoders to stabilize CV discovery and impose a
hierarchy on the data-driven order parameters.

A. Efficient parameterization of closed nonlinear
manifolds using internal coordinate representations
and circular autoencoders

We previously deployed MESA to perform data-driven
CV discovery and FES exploration for alanine dipeptide in
vacuum, employing Cartesian coordinate representations for
the molecule and traditional autoencoder architectures,6 where

we employed data augmentation to eliminate translational and
rotational invariances (cf. Sec. II A 2). The FES for this sys-
tem contains three local minima corresponding to the C5, C7,
and αL molecular states16,43 and is supported on the surface
of a 2D flat torus parameterized by the φ and ψ backbone
dihedrals.16,43,82,83 Our prior analysis was capable of cor-
rectly identifying the dimensionality of the underlying non-
linear manifold, but was frustrated in accurately recovering
the FES due to the inability of the traditional autoencoder to
adequately represent periodic CVs. Mathematically, the flat
torus can only be embedded in four (non-periodic) dimen-
sions or higher. Our traditional 21-40-2-40-21 autoencoder
possessing K = 2 bottleneck nodes and D = 21 input and out-
put nodes containing the Cartesian coordinates of the seven
atoms in the molecule constructed a 2D projection with artifi-
cial intersections and recrossings of the underlying nonlinear
manifold that introduced errors into the FES.84–86 Figures 6(a)
and 6(b) present scatter plots of the embeddings of all molec-
ular configurations collected over the course of the 10 MESA
iterations into the {ξ1, ξ2} identified by the terminal traditional
autoencoder and colored by the φ and ψ dihedral angles. It is
clear that there is no linear relationship between the identi-
fied CVs and the backbone dihedrals as would be expected
for proper identification of the important molecular collec-
tive motions. Closed loops lying on top of one another in the
2D projection are artifacts symptomatic of the 2D projection
of the flat torus topology of the nonlinear embedding. The
Ramachandran plot in Fig. 6(c) shows that MESA was capa-
ble of driving comprehensive sampling of the configurational
space. However, the corresponding FES in (φ, ψ) presented in
Fig. 6(d)—computed by reweighting of F(ξ1, ξ2) computed
by WHAM—contains qualitative errors relative to the true
landscape calculated by direct umbrella sampling in (φ, ψ)
shown in Fig. 6(m). Most egregiously, there is an artificial
local minimum near (φ = �2.5, ψ = �0.5), and the extent and
depth of the αL well are quantitatively incorrect. These errors
arise from fundamental difficulties in applying dimensionality
reduction to systems possessing closed nonlinear manifolds
parameterized by periodic CVs.82
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FIG. 6. Applications of MESA to ala-
nine dipeptide in a vacuum employing
various autoencoder architectures and
representations of the molecular config-
uration. [(a)–(d)] Cartesian molecular
representations provided to a traditional
autoencoder, [(e)–(h)] cos/sin pairs of
backbone dihedral angles provided to a
traditional autoencoder, [(i)–(l)] cos/sin
pairs of backbone dihedral angles pro-
vided to a circular autoencoder. Rows
1 and 2 present scatter plots of the
2D nonlinear embeddings of all snap-
shots harvested over the course of all
MESA iterations into the CVs discov-
ered by the terminal converged autoen-
coder (ξ1, ξ2) and colored by the φ and
ψ backbone dihedrals. Row 3 presents
Ramachandran plots of the same data.
Row 4 contains estimates of the unbi-
ased free energy surfaces F(φ, ψ) com-
puted by processing biased umbrella
sampling simulations in (ξ1, ξ2) using
the WHAM formalism64 and reweight-
ing into (φ, ψ) using BayesWHAM.65

(m) Free energy surface F(φ, ψ) com-
puted by direct umbrella sampling in (φ,
ψ) and the solution of the WHAM equa-
tions. Free energy surfaces are rendered
over a 33× 33 square grid, and free ener-
gies are reported in units of reciprocal
temperature β = 1/kBT at T = 300 K.
The arbitrary zero of free energy of each
landscape is arbitrarily shifted to mini-
mize the least squares error relative to
that in panel (m).

We previously solved this problem by appealing the
Whitney embedding theorem, which guarantees that a
K-dimensional manifold can be properly embedded in
R(2K+1).85 Accordingly, we suggested that a conservative
approach to engaging systems suspected of possessing
periodicities in their nonlinear projections—indicated, for
example, by the presence of closed loops in the embedding
—would be to recover CVs using a traditional autoencoder
with (2K + 1) bottleneck nodes, where K is the FVE esti-
mate of the system dimensionality. This approach worked
well in that the reweighted FES in (φ, ψ) recovered by a
K = 4 bottleneck node traditional autoencoder (it is known
that a flat torus is fully unfolded in 4D82) fell into quanti-
tative agreement with the true FES.6 Mathematically, how-
ever, this approach was unsatisfying and inefficient, largely
because the cost of biased calculations scales geometrically
with dimensionality and this approach required that enhanced
sampling be performed in an unnecessarily high-dimensional
space.

We propose as an alternative solution moving to an
internal coordinate representation of the molecule based on
backbone dihedral angles, which naturally facilitates the dis-
covery of periodic variables constructed from possibly non-
linear combinations of these periodic degrees of freedom. In
order to properly account for the periodicity of each angle, we
represent each angle within a linear metric space under the

mapping ϕ 7→ (sin ϕ, cos ϕ).60 Amounting to a representation
of each angle on the unit circle, this transformation neatly
accounts for the periodicity such that similar angles possess
similar values of (sin ϕ, cos ϕ) regardless of the location
of the periodic boundary in ϕ.60 Containing four back-
bone dihedrals [Fig. 5(a)], this scheme allows us to repre-
sent the (backbone) configurations of alanine dipeptide as a
(D = 8)-dimensional vector to be presented to the autoen-
coder for training. This representation is naturally rotationally
and translationally invariant, and so the data augmentation
procedure described in Sec. II A 2 is unnecessary. A defi-
ciency of this representation is that it considers only the
backbone configuration, and we anticipate that extension
of this methodology to larger molecules possessing long
side chains may require the incorporation of side chain
dihedral angles. Applications to longer biomolecules may
require the design of weighted error functions to account
for the higher sensitivity of the error function to changes
in dihedral angles near the center of the chain that entail a
more substantial molecular rearrangement than those near the
end.6

We present in Figs. 6(e)–6(h) the results from 10 rounds
of MESA using a dihedral angle molecular representation
and employing an 8-15-2-15-8 traditional autoencoder. Two
bottleneck nodes were employed to reflect the known dimen-
sionality of the underlying 2D flat torus.16,43,82,83 It is clear
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from the 2D nonlinear projections that despite providing dihe-
dral angles directly as inputs, the traditional autoencoder
topology possessing non-circular bottleneck nodes lacks the
mathematical flexibility to identify terminal CVs (ξ1, ξ2)
strongly correlated with (φ, ψ) [Figs. 6(e) and 6(f)]. The plots
reveal the presence of closed loops, again indicative of an
improper low-dimensional projection of a higher-dimensional
manifold with a closed topology and periodic CVs. The
Ramachandran plot indicates relatively poorer sampling of
configurational space [Fig. 6(g)], suggesting that the CVs
discovered are not well correlated with the important molec-
ular motions and are quite poor order parameters in which to
conduct enhanced sampling. The FES also contains signifi-
cant distortions compared to the true landscape, improperly
resolving the shape and depth of the local minima [Figs. 6(h)
and 6(m)].

We show in Figs. 6(i)–6(l) the results from 10 rounds of
MESA using a dihedral angle molecular representation and
employing an 8-15-(2 × 2)-15-8 circular autoencoder con-
taining two pairs of circular nodes (cf. Sec. II A 3). The
combination of a dihedral angle molecular representation
and circular autoencoder architecture enables the autoencoder
to ably discover CVs (ξ1, ξ2) that are periodic and essen-
tially bijective with (φ, ψ), with linear correlation coefficients
of ρ(ξ1, φ) = 0.9976 (p < 10�17) and ρ(ξ2, ψ) = 0.9995
(p < 10�17). The scatter plots showing the embedding of the
simulation data into (ξ1, ξ2) now wrap seamlessly through
the π/-π periodic boundaries in each dimension and do not
exhibit the closed loops that plagued the previous applica-
tions [Figs. 6(i) and 6(j)]. The Ramachandran plot exhibits
good sampling of configurational space as should be expected
for CVs coincident with the important molecular motions
[Fig. 6(k)], and the FES is in quantitative agreement with the
true landscape, resolving the topography of the landscape to
thermal accuracy [Figs. 6(l) and 6(m)].

B. Tailored error functions and network
architectures to guide CV discovery

Training an autoencoder to reconstruct its own inputs
requires the definition of a metric by which to measure the
reconstruction fidelity. The squared deviation summed over
all degrees of freedom provides a standard measure that
can be generically applied to any biomolecule [cf. Eq. (1)].
This choice is not unique, and the selection of alterna-
tive error functions provides the opportunity to incorporate
prior knowledge of the molecular system into the autoen-
coder training and thereby guide CV discovery toward phys-
ically meaningful collective motions. One example of mod-
ifying the error function is the data augmentation approach
described in Sec. II A 2 which modifies the manner in
which the error function is computed to reflect our prior
understanding that the CVs should be invariant to rigid
body translation and rotation [cf. Eq. (3)]. In this sec-
tion, we first explore the incorporation of prior knowledge
of the folding behavior of the Trp-cage mini protein to
improve CV discovery by designing bespoke error functions
using generalized encoder-decoder neural network architec-
tures. We then propose a principled metric by which to

identify “good” choices of error function for arbitrary molec-
ular systems.

1. Incorporating prior knowledge into tailored
error functions

We now perform MESA CV discovery and acceler-
ated sampling for four physically motivated error functions
incorporating different aspects of prior knowledge about Trp-
cage folding. In order to isolate the effect of the error function,
all MESA analyses consider a 180-50-2-50-Dout traditional
autoencoder to which we pass the mean-centered Cartesian
coordinates of the 60 backbone atoms of Trp-cage in implicit
solvent. The choice of K = 2 bottleneck nodes is motivated
by prior work by ourselves and others that revealed a 2D
underlying nonlinear manifold for this peptide6,87 and which
was verified by applying the L-method to identify a knee
in the fraction of variance explained [cf. Eq. (2)] at K = 2
for each choice of error function.6,57 The number of out-
put nodes Dout is selected to support the particular error
function in question. In each case, 16 iterative rounds of
MESA are conducted, which in all cases is sufficient to attain
convergence.

Error function 1: Backbone squared deviation. We
adopt as our first choice of error function the standard rota-
tionally and translationally aligned squared deviation of the
backbone atom Cartesian coordinates [Eq. (3)],
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where we employ a single reference configuration zref corre-
sponding to the mean-centered Trp-cage native state obtained
from the Protein Data Bank (PDB ID: 1L2Y),78,79 Lbb

(
zq, zref

)
performs the optimal rotational alignment of the backbone
atoms of configuration zq and the reference configuration,
and we find it unnecessary to apply any regularization term.
We employ N = 64 random 3D rotations to achieve rota-
tional invariance in the CVs. To reduce training costs, in each
round of MESA we perform K-means clustering using Cα

RMSD as a distance metric to identify 500 clusters from which
we randomly select a sample to generate a training set of
Q = 500 examples. The size of the training set is therefore
QN = 32 000. In going from the first to the second line, we have
expanded the summation over 60 Trp-cage backbone atoms,
as this will prove useful in drawing comparisons to subse-
quent error functions. We run 16 rounds of MESA employ-
ing a 180-50-2-50-180 autoencoder and present the results in
Figs. 7(a)–7(g).

The scatter plots colored by various physical molecular
observables presented in Figs. 7(a)–7(e) aid in the physical
interpretation of the autoencoder CVs. From these plots, it is
visually apparent that ξ1 most strongly discriminates molec-
ular configurations on the basis of the Cα RMSD and end-
to-end distance. To quantify the strength of this nonlinear
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FIG. 7. Application of MESA to Trp-
cage in implicit solvent using tradi-
tional autoencoders employing various
error functions. [(a)–(g)] E(1): Back-
bone squared deviation, [(h)–(n)] E(2):
Backbone and helix squared devia-
tion, [(o)–(u)] E(3): Backbone pairwise
distances, [(v)–(B)] E(4): Backbone
and helix squared deviation plus back-
bone pairwise distances. Rows 1-5
present scatter plots of the 2D nonlin-
ear embeddings of all snapshots har-
vested over the course of all MESA iter-
ations into the CVs discovered by the
terminal converged autoencoder (ξ1,
ξ2) and colored, respectively, by the
Cα RMSD, Cα-helix RMSD, end-to-
end distance d1,20, molecular chiral-
ity θ1,9,14,20, and vertical shift (d11,20
� d1,11) [cf. Fig. 5(b)]. Row 6 con-
tains the free energy surfaces in the
data-driven collective variables F(ξ1,
ξ2) rendered over a 20 × 20 square
grid. The letter N marks the native state
residing at the global free energy min-
imum. Row 7 contains reweightings of
the unbiased free energy estimates into
F(Cα RMSD, Cα-helix RMSD) ren-
dered over a 40 × 40 square grid. The
upper arrow in panel (g) indicates the
nucleation-condensation folding path-
way, and the lower arrow indicates the
diffusion-collision pathway. Free ener-
gies are reported in units of reciprocal
temperature β = 1/kBT at T = 300 K.
The arbitrary zero of free energy of each
landscape is shifted to equalize the free
energy of the native state between all
landscapes.

correlation, we employ a normalized mutual information mea-
sure between a pair of variables x and y known as the redun-
dancy R(x, y).88 This quantity is a symmetric measure of
the information content of one variable for the other, where
R(x, y) = 0 if the variables are independent and R(x, y)
= 1 if knowledge of one variable fully specifies the state
of the other. The values of R(ξ1, Cα RMSD) = 0.36 and
R(ξ1, d1,20) = 0.31 support our visual interpretation, showing
that ξ1 possesses a moderately strong nonlinear correlation
with these two molecular observables. Turning to ξ2, we find

R(ξ2, Cα-helix RMSD) = 0.23 and R(ξ2, sin θ1,9,14,20) = 0.21,
demonstrating a moderate nonlinear associate of this CV with
the RMSD of the N-terminal α-helix and the global molecular
chirality.

The FES in Fig. 7(f) shows that MESA achieves good
sampling of the configurational space, resolving the folded
state of the peptide residing at the global free energy mini-
mum and the funneled free energy landscape containing the
metastable states lying up to ∼30 kBT higher in free energy.
Reweighting the landscape into the two physical variables
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(Cα RMSD and Cα-helix RMSD) facilitates comparisons
with previous work6,87,89–91 and illustrates that we achieve
excellent sampling of the configurational space and recon-
struction of the FES commensurate and consistent with that
achieved by replica exchange molecular dynamics89 and unbi-
ased folding trajectories87 [Fig. 7(g)]. Trp-cage is known to
fold by two parallel pathways: nucleation-condensation in
which the hydrophobic core forms first followed by folding
of the N-terminal α-helix and diffusion-collision in which the
α-helix forms first followed by formation of the remaining
secondary structural elements and packing of the hydropho-
bic core87,89–91 (Fig. 8). Consistent with the stronger corre-
lation of our CVs with Cα RMSD, our sampling along the
Cα RMSD dimension is superior to that along the Cα-helix
RMSD axis such that we better resolve the diffusion-collision
pathway [lower arrow in Fig. 7(g)], but the nucleation-
condensation pathway (upper arrow) remains relatively poorly
sampled.

Accordingly, error function E(1) performs satisfactorily
in enabling MESA to attain good sampling of the diffusion-
collision pathway, but leaves the nucleation-condensation
route relatively underexplored. This can be understood by real-
izing that the backbone squared deviation error function is rela-
tively insensitive to conformational changes in the N-terminal
α-helix which induce relatively small changes in the global
RMSD compared to larger scale molecular rearrangements.
Accordingly, under E(1) MESA has difficulty identifying the
local folding and unfolding of this secondary structural ele-
ment as an important molecular motion and fails to achieve
good sampling in this coordinate.

Error function 2: Backbone and helix squared
deviation. To incorporate our prior knowledge that unfold-
ing of the N-terminal helix is an important component of
Trp-cage folding, we augment the error function E(1) with an
additional term,
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FIG. 8. Illustration of the two folding pathways of Trp-cage. Along the
nucleation-condensation pathway (top), the hydrophobic core forms first, fol-
lowed by folding of the N-terminal α-helix. Along the diffusion-collision
route (bottom), theα-helix forms first followed by formation of the remaining
secondary structural elements and packing of the hydrophobic core.

where Lhelix

(
zq, zref

)
performs the optimal rotational align-

ment of the 21 backbone atoms within the N-terminal helix,
and the second sum in the square brackets aggregates the
squared deviations of these atoms. The mixing parameter α
controls the relative importance of the global and N-terminal
helix squared deviations. We set α = 4 so that these two terms
span approximately the same range and are therefore simi-
larly weighted. Many autoencoder architectures can support
this error function, but a simple choice is a 180-50-2-50-243
architecture, in which the first 180 outputs are the Cartesian
coordinates of the 60 backbone atoms and the remaining 63
are the coordinates of the 21 backbone atoms in the N-terminal
helix. Strictly speaking, this architecture is no longer a true
autoencoder, but a generalized encoder-decoder.92

The free energy surface in Fig. 7(n) shows that this error
function enables MESA to better sample configurational space
and comprehensively explore both the diffusion-collision and
nucleation-condensation pathways. This is achieved by guid-
ing MESA to discover CVs better correlated with both the
global RMSD and the N-terminal helix RMSD as is illus-
trated in the heat maps in Figs. 7(h)–7(l). In this case, ξ2

is highly informative of the global RMSD and end-to-end
distance [R(ξ2, Cα RMSD) = 0.35; R(ξ2, d1,20) = 0.37],
and ξ1 is strongly correlated with Cα-helix RMSD and the
vertical shift [R(ξ1, Cα-heix RMSD) = 0.21; R(ξ1, (d11,20

� d1,11)) = 0.27]. An additional consequence is that both
CVs become less strongly associated with the global molecu-
lar chirality [R(ξ1, sin θ1,9,14,20) = 0.058; R(ξ2, sin θ1,9,14,20)
= 0.054], indicating that under E(2) this molecular observ-
able takes on a less important role than under E(1). These
results clearly demonstrate the capacity of the error function to
guide CV discovery and enhance sampling of configurational
space.

Error function 3: Backbone pairwise distances. Error
function E(2) shows good performance, but requires prior
understanding of molecular folding. This can be both a bless-
ing and a curse: if prior knowledge exists, this can be directly
encoded into the error function to enhance performance, but
doing so mitigates the generality of the error function and its
extensibility to arbitrary molecular systems for which prior
understanding is unavailable. Accordingly, we next sought
an error function possessing similar to the performance of
E(2) but the generality of E(1). Motivated by concepts from
elastic network and Go models in protein folding,93 we pro-
pose an error function based on the pairwise distances between
all backbone atoms as an effective means to measure configura-
tional proximity that we anticipate should be more responsive
than the global squared deviation to the folding and unfold-
ing of secondary structural elements. We adopt as our error
function

E(3)
(
{w i

jk , bi
k }; {zq}

)
=
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where (z(i)
q −z(j)

q ) is the distance between backbone atoms i and

j in training configuration zq and d̂
(ij)
qn is the corresponding dis-

tance in the autoencoder reconstruction when presented with
Rn

(
zq

)
as a random rigid rotation of zq. Although pairwise
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distances are formally an internal coordinate representations,
we find that training is nevertheless improved by employing
rotational data augmentation with N = 64 random rotations.
We employ a 180-50-2-50-1770 generalized encoder-decoder
to support this error function, in which the inputs are the
Cartesian coordinates of the 60 backbone atoms and the
outputs are their

(
60
2

)
= 1770 pairwise distances.

The free energy surface in Fig. 7(u) demonstrates that
E(3) performs better than E(1) in mediating good sampling of
configurational space and almost as well as E(2) in which it
leaves only the low-Cα RMSD—high-Cα-helix RMSD region
slightly less populated. Interestingly, this good sampling is
achieved with rather similar CVs to those discovered under
E(2). Again ξ2 is strongly correlated with the global RMSD
and end-to-end distance [R(ξ2, Cα RMSD) = 0.55; R(ξ2, d1,20)
= 0.44], and ξ1 is strongly correlated with Cα-helix RMSD
and the vertical shift [R(ξ1, Cα-helix RMSD) = 0.21; R(ξ1,
(d11,20 � d1,11)) = 0.36]. Similarly, the chirality is poorly cor-
related with either CV, which is to be expected from an error
function constructed from pairwise distances that are invari-
ant to molecular handedness [R(ξ1, sin θ1,9,14,20) = 0.021; R(ξ2,
sin θ1,9,14,20) = 0.0068].

Error function 4: Backbone and helix squared
deviation plus backbone pairwise distances. Finally, we
design a relatively complex mixed error function incorporating
backbone squared deviations, helix squared deviations, and
backbone pairwise distances formed from a combination of
E(2) and E(3),

E(4)
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where we adopt as our linear mixing parameters α = 4 and
γ = 1 to place the range of all terms on a similar scale. In this
case, our pairwise distance term sums over only the Cα atoms
in the peptide backbone. We implement this error function in a
180-50-2-50-433 generalized encoder-decoder architecture in
which the first 180 outputs are the 60 backbone atom coordi-
nates, the next 63 are the 21 backbone atoms in the N-terminal
helix, and the remaining

(
20
2

)
= 190 are the pairwise distances

between the 20 Cα backbone atoms.
Figure 7 demonstrates that E(4) provides MESA commen-

surate performance in recovering the FES as E(2), albeit at
the expense of a more complex and costly to evaluate error
function that elevates the complexity and training cost of the
network. The data-driven CVs are physically consistent with
those obtained under E(2) and E(3), with ξ2 strongly associ-
ated with the global RMSD and end-to-end distance [R(ξ2, Cα

RMSD) = 0.40; R(ξ2, d1,20) = 0.39] and ξ1 strongly associated
with Cα-helix RMSD and the vertical shift [R(ξ1, Cα-helix
RMSD) = 0.28; R(ξ1, (d11,20 � d1,11)) = 0.23]. The preserva-
tion of these correlations is not surprising given that E(4) is
essentially a weighted sum of E(2) and E(3).

2. Principled error function design

Section III B 1 presents a number of different possible
choices for error functions, but how might one systematically
compare and rank different choices? More generally, is there
a rational principle by which one might design good error
functions? We propose that the quality of the error function
may be empirically evaluated by the volume of configurational
space sampled by the terminal MESA iteration. The basis
for this measure is that good CVs most coincident with the
important molecular motions should permit the most expan-
sive sampling. Evaluation of this metric requires definition of
distance between points in configurational space and a means
to measure this explored volume. A satisfactory approach
to this problem is to define distances between the terminal
MESA simulation snapshots according to their Cα RMSD
and to enumerate the number of non-overlapping, fixed-radius
hyperspheres we may deposit onto the projected points. Math-
ematically, if we represent the simulation snapshots collected
by the terminal round of MESA as the ensemble of points
y ∈X, we seek the subset y0 ∈X0 ⊂ X simultaneously satisfying
the two conditions,

∀y ∈ X, ∃y0 ∈ X0 s.t. d(y, y0) < r, (10)

∀y0 ∈ X0, d(yi
0, yj

0) ≥ r for i , j, (11)

where r is the hypersphere radius and d(yi, yj) is the Cα RMSD
distance between two molecular snapshots i and j. The set
y0 ∈ X0 can be efficiently estimated by looping over all y ∈ X
and adding each snapshot to X0 if and only if there are no
existing snapshots in X0 with which it incurs hypersphere
overlaps. The calculated volumes depend on the particular
choice of distance metric and hypersphere radius, but the Cα

RMSD is a relatively generic metric and sufficient for this
approach to satisfactorily discriminate between candidate error
functions.

We present in Table I the number of non-overlapping
hyperspheres |X0| of radius r = 3 Å that can be deposited
over the configurational ensemble harvested by the terminal
round of MESA for each of the four candidate error func-
tions in Sec. III B 1. The rank ordering of the error functions
under this metric is consistent with our analyses based on the
FES, with E(2) showing the best performance, E(1) showing
the poorest, and E(3) and E(4) lying in-between.

We observe that a minor modification of E(1) to E(2) by
incorporating prior knowledge of the importance of conforma-
tional changes in the N-terminal helix led to a nearly 3-fold

TABLE I. Volume of configurational space spanned by ensemble of config-
urations harvested by the terminal round of MESA for each of the four error
functions. Uncertainties are estimated as the standard deviation in the hyper-
sphere count under 10 permutations in the order in which the snapshots are
considered.

Error function Number of hyperspheres, |X0 | (r = 3 Å)

E(1) 184 ± 4
E(2) 507 ± 9
E(3) 305 ± 6
E(4) 313 ± 5
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increase in the volume of explored configurational space. We
also note that the explored volume associated with E(4) is
only 60% of that associated with E(2), indicating that more
complex error functions do not necessarily lead to improved
sampling. The key result of our analysis is the value of incorpo-
rating physically pertinent information, here Cα-helix RMSD,
without introducing confounding or irrelevant terms in guid-
ing the discovery of CVs strongly correlated with important
molecular motions. For example, including terms pertaining to

configurational motions irrelevant to global folding (e.g., a
local C–H) stretch will bias the autoencoder to discover CVs
that place a lot of weight on this motion, but which are unlikely
to assist in the global exploration of configurational phase
space. In practice, we suggest that if prior knowledge exists,
then this should be exploited to design bespoke error functions
such as E(2). In the absence of prior understanding, we suggest
the initial use of a generic error function such as E(3), followed
by trial-and-improvement error function design using human

FIG. 9. Application of MESA to Trp-
cage in implicit solvent using tradi-
tional (columns 1-3) and hierarchical
(columns 4-6) autoencoders. For each
iteration of each series, we present non-
linear projections into the current CVs
(ξ1, ξ2) colored by the end-to-end
distance d1,20 (columns 1 and 4) and
molecular chirality θ1,9,14,20 (columns
2 and 5) [cf. Fig. 5(b)] and the Pear-
son correlation matrix (columns 3 and
6) between the CVs in the current and
preceding iteration.
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intuition and maximization of the explored configurational
volume as a design precept.

Importantly, we observe that it is typically far easier to
incorporate intuition and prior knowledge into the error func-
tion to guide CV discovery than it is to intuit and develop
mathematical expressions for good CVs directly. In this sense,
the autoencoder can be thought of as solving the inverse prob-
lem between our understanding of what it means to provide a
good representation of a molecular configuration encoded in
the error function and furnishing a mathematical description
of good CVs with which to provide this description through
the relationship ξ = Θencode(z).

C. Stabilization and rank-ordering of CVs using
hierarchical autoencoders

A deficiency of CV recovery using traditional autoen-
coders is that the data-driven CVs lack a hierarchical ordering
such that the leading CV ξ1 may be interpreted as the most
important dimensional in the nonlinear projection for recon-
structing the molecular state, ξ2 may be interpreted as the next
most important, and so on.50 In the absence of this ordering,
the CVs may also be unstable since nonlinear embeddings
formed from different orderings and linear transformations of
the CVs contain the same information content. This can present
challenges in comparing the CVs between subsequent MESA
rounds to assess convergence.

We engage this deficiency by appealing to hierarchi-
cal autoencoder architectures as proposed by Scholz and
Vigário.49,50 As detailed in Sec. II A 4, these autoen-
coder networks seek a set of CVs providing good recon-
struction fidelities from nonlinear subspaces comprising the
k = 1, . . ., K leading CVs. We test the performance
of hierarchical autoencoders against traditional architec-
tures by conducting 10 rounds of MESA on Trp-cage in
implicit solvent employing 180-50-2-50-Dout network topolo-
gies, where Dout = 180 for the traditional architecture and
Dout = 2× 180 = 360 for the hierarchical architecture to support
the two independent decoders using ξ1 and (ξ1, ξ2) for recon-
struction. We train the network over the mean-centered Carte-
sian coordinates of the 60 backbone atoms of Trp-cage, and the
K = 2 bottleneck nodes reflect the 2D nature of the under-
lying nonlinear manifold for this peptide.6,87 For simplicity,
we adopt as the error function for each independent decoder
the simple backbone squared deviation defined by E(1) in
Eq. (6).

We present in Fig. 9 the results of our comparative anal-
ysis for the MESA series generated by traditional (columns
1-3) and hierarchical (columns 4-6) autoencoders. The non-
linear projections of the molecular snapshots into the CVs at
each iteration show that the traditional CVs tend to swap iden-
tities and rotate between iterations (columns 1-2), whereas
the hierarchical CVs quickly stabilize with ξ1 linearly corre-
lated with end-to-end distance and ξ2 with molecular chiral-
ity (columns 4-5). After only four iterations, the hierarchical
CVs are largely conserved between iterations up to a trivial
sign change, indicating that the end-to-end distance is a more
important molecular variable in describing folding than the
chirality. We quantify CV stability by computing the Pearson

TABLE II. Fraction of variance explained (FVE) in the nonlinear reconstruc-
tions of Trp-cage molecular configurations by traditional and hierarchical
autoencoders with K = 2. Five independent autoencoders of each architecture
were trained and the mean and standard deviation of the FVE were computed
using the leading CV FVE(ξ1) and both CVs FVE(ξ1, ξ2).

Autoencoder type FVE(ξ1) FVE(ξ1, ξ2)

Traditional N/A 0.882 ± 0.002
Hierarchical 0.688 ± 0.004 0.860 ± 0.002

correlation matrix of the current CVs with those in the preced-
ing iteration (columns 3 and 6). The matrix quickly approaches
diagonal for the hierarchical series, with off-diagonal elements
dwarfed by the on-diagonal. Conversely, large off-diagonal
elements in the traditional series reflect CV identify flipping
and rotation, frustrating assessment of convergence or relative
variable importance.

Given the stability of CVs learned by hierarchical autoen-
coders, is it always better to use hierarchical autoencoders
than traditional architectures? Inspecting the hierarchical error
function for our K = 2 example EH = E1 + E1,2 [cf. Eq. (5)], we
anticipate that the presence of the partial error term E1 may
degrade the quality of the reconstruction fidelity in the full
error term E1,2. In other words, supplying additional terms
in the error function to impose hierarchical ordering may
drive the CVs spanning the full K-dimensional space away
from optimality. We quantify this effect by training an ensem-
ble of five traditional and five hierarchical autoencoders over
all snapshots collected by the terminal round of hierarchi-
cal MESA described above and report in Table II the mean
and standard deviation in the fraction of variance explained
by the reconstructed outputs [Eq. (2)]. The hierarchical error
function degrades by ∼2.5% the reconstruction quality from
the full K-dimensional nonlinear projection relative to the
traditional architecture. Accordingly, the imposition of hier-
archical CV ordering carries some penalty in reconstruction
accuracy, and hierarchical network architectures may not be
an optimal choice if accuracy is of paramount concern. In
practice, these two factors may be traded off by formulating
the hierarchical error function as a weighted sum and tun-
ing the linear mixing parameters specifying the importance
of the reconstruction accuracy from each nonlinear subspace
EH =

∑K
k=1 αkE1,...,k .49

IV. CONCLUSIONS

We recently reported the use of auto-associative neural
networks (“autoencoders”) to extract from molecular simu-
lation trajectories nonlinear collective variables (CVs) with
explicit and differentiable functional forms, and employed
the MESA framework to perform interleaved rounds of CV
discovery and enhanced sampling to efficiently parameter-
ize and recover molecular free energy landscapes.6 In this
work, we report a number of advances in the neural net-
work architecture and error functions to render the approach
more powerful and generic and employ alanine dipeptide and
Trp-cage as benchmark systems upon which to validate our
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methodologies. First, we demonstrated the use of autoencoders
with circular bottleneck layers to facilitate the discovery of
periodic CVs parameterizing nonlinear manifolds with closed
topologies. This advance carries significant computational sav-
ings by eliminating the need to embed the closed manifolds
in higher dimensional spaces where the cost of enhanced
sampling becomes geometrically more expensive. Second, we
detailed how prior understanding of molecular behavior may
be incorporated into the error functions for autoencoder train-
ing to guide CV discovery and improve configurational explo-
ration. We demonstrated that large improvements in CV recov-
ery and enhanced sampling can be realized by the inclusion of
small amounts of prior knowledge through tailored error func-
tions and generalized encoder-decoder network architectures.
We also proposed maximization of the volume of explored
configurational space as a quantitative metric with which to
evaluate and design bespoke error functions. Third, we pro-
posed the use of hierarchical autoencoders to rank-order the
data-driven CVs in order to stabilize their discovery and assist
in interpretation of their physical importance. Numerical tests
show the value of these network architectures in assisting
in understanding the more important physical determinants
of folding and accelerating convergence, but also reveal a
trade-off between hierarchical ordering and reconstruction
accuracy.

This work deliberately focused on two small biomolecules
as well-understood test systems for the validation and bench-
marking of our innovations. Despite demonstrating good
proof-of-principle for our techniques, it is of interest to extend
our analyses to larger and more realistic biomolecules. We
envisage that such systems will most benefit from the inno-
vations developed in the present work, where we anticipate
significant challenges associated with CV discovery due to
the “hidden barrier” problem5 that will require tailored error
functions and generalized network architectures to be over-
come. We also see a number of opportunities for additional
methodological development. First, we used our design met-
ric to compare a number of intuited error functions, and it
would be valuable to mature this approach into a systematic
framework for error function design. We suggest, for exam-
ple, that maximization of the explored configurational volume
could be used as an objective function within an optimization
procedure seeking the optimal linear combination of an ensem-
ble of trial error function terms such as the global RMSD,
local RMSD, pairwise Cα distances, fraction of native con-
tacts, etc. Second, we have restricted our network architectures
to single hidden layers, but it would be interesting to relax
this constraint to compare the relative performance of “short-
and-fat” versus “thin-and-deep” architectures. More generally,
we would like to explore the use of more exotic network
architectures comprising convolutional layers, boosted trees,
and time-delays in order to more flexibly accept and analyze
simulation data. Third, our networks seek nonlinear projec-
tions into CVs that best enable accurate molecular recon-
structions. Recent work by Frank Noé, Cecilia Clementi, and
co-workers and Vijay Pande and co-workers has centered on
the identification of slow CVs that best approximate the slow
modes of the propagator governing the time evolution of the
system using time-lagged independent component analysis

(tICA), kernel tICA, VAMPnets, time-lagged autoencoders,
and variational dynamical encoders.94–103 Incorporation of
temporal information into CV discovery is a powerful attribute
that can help mitigate the discovery of high-variance, unin-
formative CVs and attenuate the hidden barrier problem.5 It
remains unclear, however, how to preserve dynamical order-
ing within biased sampling routines necessary for iterative
exploration of configurational space in order to integrate slow
CVs with biasing techniques and also extract useful informa-
tion from biased simulation data. Fourth, work to date has
focused on using these techniques to better understand molec-
ular folding. An important next step is to use the landscapes
recovered by these techniques for design to modulate the sur-
face of the landscape to rationally engineer desired structure
and function.104
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APPENDIX: SOFTWARE AND DATA AVAILABILITY

A software to perform autoencoder CV discovery, con-
duct boundary detection, compute biasing forces, perform
umbrella sampling, and estimate the unbiased FES has been
developed and hosted for free public download under the MIT
License at https://github.com/weiHelloWorld/ANN Force and
https://github.com/weiHelloWorld/accelerated sampling with
autoencoder. The autoencoder routines are built on

Keras libraries (https://github.com/fchollet/keras) running on
Theano.69 The biasing force calculations are designed to inte-
grate with the freely available OpenMM 7.0 simulation suite
(http://openmm.org).70,71
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15L. Rosso, P. Mináry, Z. Zhu, and M. E. Tuckerman, “On the use of the
adiabatic molecular dynamics technique in the calculation of free energy
profiles,” J. Chem. Phys. 116, 4389–4402 (2002).

16P. G. Bolhuis, C. Dellago, and D. Chandler, “Reaction coordinates of
biomolecular isomerization,” Proc. Natl. Acad. Sci. U. S. A. 97, 5877–5882
(2000).

17A. L. Ferguson, A. Z. Panagiotopoulos, P. G. Debenedetti, and I. G.
Kevrekidis, “Systematic determination of order parameters for chain
dynamics using diffusion maps,” Proc. Natl. Acad. Sci. U. S. A. 107,
13597–13602 (2010).

18R. Hegger, A. Altis, P. H. Nguyen, and G. Stock, “How complex is the
dynamics of peptide folding?,” Phys. Rev. Lett. 98, 028102 (2007).

19J. Wang and A. L. Ferguson, “Nonlinear machine learning in simulations
of soft and biological materials,” Mol. Simul. (published online).

20A. L. Ferguson, “Machine learning and data science in soft materials
engineering,” J. Phys.: Condens. Matter 30, 043002 (2018).

21A. L. Ferguson, A. Z. Panagiotopoulos, I. G. Kevrekidis, and P. G.
Debenedetti, “Nonlinear dimensionality reduction in molecular simu-
lation: The diffusion map approach,” Chem. Phys. Lett. 509, 1–11
(2011).

22A. E. Garcı́a and K. Y. Sanbonmatsu, “Exploring the energy landscape of a
β hairpin in explicit solvent,” Proteins: Struct., Funct., Bioinf. 42, 345–354
(2001).

23P. I. Zhuravlev, C. K. Materese, and G. A. Papoian, “Deconstructing
the native state: Energy landscapes, function, and dynamics of globular
proteins,” J. Phys. Chem. B 113, 8800–8812 (2009).

24A. Amadei, A. Linssen, and H. J. Berendsen, “Essential dynamics of
proteins,” Proteins: Struct., Funct., Bioinf. 17, 412–425 (1993).

25A. E. Garcı́a, “Large-amplitude nonlinear motions in proteins,” Phys. Rev.
Lett. 68, 2696 (1992).

26P. Das, M. Moll, H. Stamati, L. E. Kavraki, and C. Clementi, “Low-
dimensional, free-energy landscapes of protein-folding reactions by non-
linear dimensionality reduction,” Proc. Natl. Acad. Sci. U. S. A. 103,
9885–9890 (2006).

27H. Stamati, C. Clementi, and L. E. Kavraki, “Application of nonlin-
ear dimensionality reduction to characterize the conformational land-
scape of small peptides,” Proteins: Struct., Funct., Bioinf. 78, 223–235
(2010).

28T. Ichiye and M. Karplus, “Collective motions in proteins: A covariance
analysis of atomic fluctuations in molecular dynamics and normal mode
simulations,” Proteins: Struct., Funct., Bioinf. 11, 205–217 (1991).

29E. Chiavazzo, R. Covino, R. R. Coifman, C. W. Gear, A. S. Georgiou,
G. Hummer, and I. G. Kevrekidis, “Intrinsic map dynamics exploration for
uncharted effective free-energy landscapes,” Proc. Natl. Acad. Sci. U. S. A.
114, E5494 (2017).

30W. Zheng, M. A. Rohrdanz, and C. Clementi, “Rapid exploration of config-
uration space with diffusion-map-directed molecular dynamics,” J. Phys.
Chem. B 117, 12769–12776 (2013).

31A. L. Ferguson, A. Z. Panagiotopoulos, P. G. Debenedetti, and I. G.
Kevrekidis, “Integrating diffusion maps with umbrella sampling: Appli-
cation to alanine dipeptide,” J. Chem. Phys. 134, 04B606 (2011).

32A. L. Ferguson, S. Zhang, I. Dikiy, A. Z. Panagiotopoulos, P. G.
Debenedetti, and A. J. Link, “An experimental and computational inves-
tigation of spontaneous lasso formation in microcin J25,” Biophys. J. 99,
3056–3065 (2010).

33K. Pearson, “LIII. On lines and planes of closest fit to systems of points
in space,” London, Edinburgh Dublin Philos. Mag. J. Sci. 2, 559–572
(1901).

34J. M. Troyer and F. E. Cohen, “Protein conformational landscapes: Energy
minimization and clustering of a long molecular dynamics trajectory,”
Proteins: Struct., Funct., Bioinf. 23, 97–110 (1995).

35B. Schölkopf, A. Smola, and K.-R. Müller, “Kernel principal compo-
nent analysis,” in International Conference on Artificial Neural Networks
(Springer, 1997), pp. 583–588.

36S. T. Roweis and L. K. Saul, “Nonlinear dimensionality reduction by locally
linear embedding,” Science 290, 2323–2326 (2000).

37Z. Zhang and J. Wang, “MLLE: Modified locally linear embedding using
multiple weights,” Adv. Neural Inf. Process. Syst. 19, 1593–1600 (2006);
available at http://papers.nips.cc/paper/3132-mlle-modified-locally-linear-
embedding-using-multiple-weights.pdf.

38J. B. Tenenbaum, V. De Silva, and J. C. Langford, “A global geometric
framework for nonlinear dimensionality reduction,” Science 290, 2319–
2323 (2000).

39K. Q. Weinberger and L. K. Saul, “Unsupervised learning of image man-
ifolds by semidefinite programming,” Int. J. Comput. Vision 70, 77–90
(2006).

40C.-g. Li, J. Guo, G. Chen, X.-f. Nie, and Z. Yang, “A version of isomap with
explicit mapping,” in 2006 International Conference on Machine Learning
and Cybernetics (IEEE, 2006), pp. 3201–3206.

41R. R. Coifman and S. Lafon, “Diffusion maps,” Appl. Comput. Harmonic
Anal. 21, 5–30 (2006).

42M. A. Rohrdanz, W. Zheng, M. Maggioni, and C. Clementi, “Determination
of reaction coordinates via locally scaled diffusion map,” J. Chem. Phys.
134, 03B624 (2011).

43J. Preto and C. Clementi, “Fast recovery of free energy landscapes via
diffusion-map-directed molecular dynamics,” Phys. Chem. Chem. Phys.
16, 19181–19191 (2014).

44C. F. Abrams and E. Vanden-Eijnden, “On-the-fly free energy parame-
terization via temperature accelerated molecular dynamics,” Chem. Phys.
Lett. 547, 114–119 (2012).
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