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ABSTRACT

Dimensionality reduction often serves as the first step toward a minimalist understanding of physical systems as well as the accelerated
simulations of them. In particular, neural network-based nonlinear dimensionality reduction methods, such as autoencoders, have shown
promising outcomes in uncovering collective variables (CVs). However, the physical meaning of these CVs remains largely elusive. In this
work, we constructed a framework that (1) determines the optimal number of CVs needed to capture the essential molecular motions using an
ensemble of hierarchical autoencoders and (2) provides topology-based interpretations to the autoencoder-learned CVs with Morse-Smale
complex and sublevelset persistent homology. This approach was exemplified using a series of n-alkanes and can be regarded as a general,
explainable nonlinear dimensionality reduction method.
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INTRODUCTION

Given a set of molecular trajectories, is it possible to auto-
matically identify physically significant collective variables (CVs),
which not only expedite computer simulations but also assist human
comprehension? Dimensionality reduction (DR) methods are piv-
otal in addressing this question, yet major concerns regarding their
explainability remain unresolved. The principle of DR methods is
to retain specific relationships between data instances. For exam-
ple, principal component analysis (PCA)' and multidimensional
scaling (MDS) are the two most common linear DR methods. The
former preserves the covariance matrix of the data, and the latter
preserves the pair-wise Euclidian distances between the data. For
nonlinear correlations, nonlinear DR techniques,l’3 such as locally
linear embedding (LLE), Isomap, diffusion map,‘w'; and autoen-
coder, can be employed. LLE can be thought of as iteratively applying

PCA to sets of neighbors, assuming the manifolds are linear locally.
The Isomap preserves the geodesic distances, while the diffusion
map preserves the diffusion distances between neighbors.” Among
these nonlinear DR methods, the autoencoder stands out as a dis-
tinct method because it consists of an encoder and a decoder that
are artificial neural networks. The encoder maps the N-dimensional
data to a reduced M-dimensional CV space, which is represented by
a bottleneck layer with m nodes,

CV = h(x), (1)
where h represents the encoder and x represents a N-dimensional
vector. The decoder reconstructs the N-dimensional samples from

the CV space,

%=h(cV), )
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where # represents the reconstructed N-dimensional vector and /
represents the decoder. The training of the autoencoder essentially
minimizes the reconstruction error, L,

L=(%-x). 3)

Various studies have focused on using DR methods to identify
CVs from molecular conformations.”” "> Brown et al. and Mar-
tin et al. studied the topology of the conformational space of a
cyclo-octane and compared both linear and nonlinear DR meth-
ods, including PCA, LLE, Isomap, and autoencoder.”'” Chen and
Ferguson proposed an autoencoder-based scheme that facilitates the
exploration of molecular conformations.'”'” One advantage of an
autoencoder over other nonlinear DR techniques is that it contains
a decoder component that provides an approximated one-to-one
mapping from the CV space back to the original space.'® This
facilitates the exploration of the CV space, where samples are less
populated.

While autoencoder seems to be a robust nonlinear DR tool, two
issues regarding the lack of “explainability” are yet to be addressed:
(1) The optimal number of reduced dimensions, Mopsim, is unknown
and, thus, needs to be prescribed. (2) The physical meaning of the
autoencoder-learned CVs is mostly obscure. To resolve the first
issue, Chen et al. computed the fraction of variance explained by
the autoencoder as a function of the number of CVs. They deter-
mined the optimal number of CVs at the point where adding one
more CV does not significantly increase the fraction of variance,
which is referred to as the “L-method.”"”'® However, the method
does not offer a detailed explanation of how it retains important
variance while filtering out unwanted variance. On the other hand,
Glielmo et al. proposed an alternative approach. They evaluated the
ratio (y;) of the distances of the two nearest neighbors of a data point
i. The optimal intrinsic dimensionality of the data was obtained by
maximizing the likelihood of all y;."”

As for the second issue, one possible way of mapping CVs to
molecular motions is to use a circular autoencoder that contains
pairs of bottleneck nodes with circular activation functions,”’ pro-
viding a mapping between CVs and the circular motions of the
molecules. Although circular motions are common in molecules,
one usually needs a priori knowledge about the molecules before
training a circular autoencoder. Scholz and Vigdrio used hierar-
chical autoencoders (HAEs)’! and yielded a set of CVs ranked by
the explained variances, yet it is challenging for humans to make
connections between these hierarchical CVs and molecular confor-
mations. Furthermore, imposing the ranking of CVs compromises
the reconstruction quality.

On the other hand, one could hypothesize that if two indepen-
dently trained autoencoders possess the same architecture (input,
bottleneck nodes, output, etc.), they would retain identical relation-
ships within the data. Consequently, these two autoencoders are
expected to capture free energy landscapes (FELs) that are isomor-
phic and unaffected by either the architectures of the autoencoders
or the stochasticity imposed in the training process. In other words,
the key to explainability may lie in the topology of the reduced
CV space. We noticed that Manuchehrfar et al. highlighted the
sensitivity of the topological structure in the reduced space due
to the process of DR.”> However, our perspective suggests that
this sensitivity primarily arises from the engineering of the feature

ARTICLE pubs.aip.org/aipl/jcp

space and the distance measures. In essence, we contend that the
topological structure of the autoencoder-learned CV space remains
consistent when the feature space and distance measures are iden-
tical. In fact, Glielmo et al. presented a comparative framework for
evaluating the information content between different distance mea-
sures.”” This approach can be particularly useful for assessing the
quality of autoencoder architectures, including feature engineering
and loss function design. Motivated by a recent work that revealed
such a topological representation of a real-valued function with
sublevelset persistent homology,”* in this paper, we adopted both
sublevelset persistent homology and, additionally, Morse-Smale
complex to give clear physical meanings to the autoencoder-
learned CVs. Before presenting the framework proposed in this
study, we first introduce the topological data analysis tools used in
this study: Sublevelset persistent homology and the Morse-Smale
complex.

Sublevelset persistent homology: Similar to a contour tree,”
sublevelset persistent homology is a mathematical technique that
helps us understand the topology of the data. For point data, per-
sistent homology describes how the data points are connected to
other points within a specific cutoff range, which is often referred
to as the persistent level. By examining variations across differ-
ent persistent levels, persistent homology reveals hidden topological
structures, such as clusters and rings, within the data. Manuchehr-
far et al. analyzed the topological changes of the high-dimensional
dynamic probability surface and identified the locations of probabil-
ity peaks, indicating stable states, and connecting ridges, implying
reaction pathways, using persistent homology.”” Hiraoka et al. ana-
lyzed the atomic structures of amorphous solids and uncovered
hierarchical atomic ring structures using persistent homology.”® If
the data are represented by a scalar field, a sublevelset is the sub-
set of a scalar field where every point in this subset has a function
value no more than a given real value, r. In the context of FEL,
a sublevelset can be thought of as a set of configurations accessi-
ble by the system at a given temperature. The sublevelset persistent
homology represents the topological variation of the sublevelset
as r varies.

Morse-Smale complex: The Morse-Smale complex is a math-
ematical technique that partitions a scalar function—a Morse
function—into regions in which the functional values vary mono-
tonically based on the critical points.”’” A smooth function f that
maps a smooth, compact, p-dimensional manifold onto a real num-
ber, i.e., f: M — R, is Morse if the Hessian matrix evaluated on any
critical point x is not singular. Figure 1 shows an example of how
Morse-Smale complexes partition a two-dimensional scalar field.
Each Morse-Smale complex corresponds to a pair of local maxi-
mums and local minimums on its boundary, as shown in Fig. 1(b).
The partition can also be performed in two other ways: (1) A set
of Morse-Smale complexes that correspond to the same local max-
imum is referred to as an ascending manifold [Fig. 1(c)]. (2) A
set of Morse-Smale complexes that correspond to the same local
minimum is referred to as a descending manifold [Fig. 1(d)]. Mono-
tonically increasing/decreasing functional value along the scalar field
terminates at the same local maximum/minimum, starting from
any point in the ascending/descending manifold. The Morse-Smale
complex has been applied in various scientific fields. Canzals et al.
analyzed the relevance of stable and unstable patches for docking
sites on the surface of a molecule with Morse-Smale decomposi-
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FIG. 1. lllustration of Morse-Smale complex decomposition. (a) f(x, y) = cos(2.57x) cos(2.5my). A Morse-Smale complex decomposition shows (b) all the Morse-Smale
complexes, (c) only the ascending manifolds, and (d) only the descending manifolds. [Red dots: local maxima, blue dots: saddle points, black dots: local minima, red lines:
boundaries of the ascending manifolds, and black lines: boundaries of the descending manifolds. The local minima in both (c) and (d) are removed for clarity since they are

irrelevant to the application of this study.]

tion;*® Laney et al. studied the structure of turbulence by analyzing
the evolution of topological features constructed by Morse-Smale
complexes.”” In principle, Morse-Smale complex decomposition
can be applied to a scalar field of arbitrary dimension.

The objective of this study is to develop a framework that can
automatically extract important CVs from molecular trajectories
using neural-network-based autoencoders and analyze the topologi-
cal features within the learned CV space using sublevelset persistent
homology and the Morse-Smale complex as a form of explana-
tion for the CVs. To focus on the development of the methodology,
we selected three simple molecules: butane, pentane, and cyclohex-
ane, whose CVs are known as the dihedral angles. Figure 2 shows
the framework of this study. First, we performed dimensionality
reduction on all-atom MD molecular trajectories using HAEs and
estimated the contribution of the variance from each hierarchical
CV. The optimal number of CVs, denoted as Moprim, Was deter-
mined by removing CVs whose contributing variances are below a
certain physically meaningful threshold or exhibit large noise due
to the stochasticity imposed during the training of HAE. Next, we
trained a traditional autoencoder with Moy and estimated the FEL
on the learned CV space. Finally, we acquired a topological represen-
tation of this autoencoder-learned FEL using sublevelset persistent
homology and Morse-Smale complex decomposition, which could

be treated as a form of explanation for the CVs generated by
autoencoders.”

ALL-ATOM MD SIMULATIONS

We performed MD simulations of the gas phase alkanes
(butane, pentane, and cyclohexane) using LAMMPS.* The OPLS-
AA forcefield”! was used. We placed one molecule in the cubic
simulation box with the box size set to 10 nm without a peri-
odic boundary condition. The positions, momentum, and angular
momentum were zeroed at every step. The time step was set to 1 fs.
The temperature was maintained using a Nosé-Hoover thermostat
(NVT).””> All cases are equilibrated for 0.1 ns before production.
Other details are tabulated in Table I.

PREPROCESSING OF THE TRAINING DATA

In this study, we selected only the backbone degrees of free-
dom for simplification. Translational and rotational symmetries
are removed by constructing a local reference coordination system
from three selected atoms; thus, the dimension of each sample is
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FIG. 2. Framework of topology-based interpretation of autoencoder-leaned collective variables. (a) All-atom MD trajectories. (b) Architecture of a hierarchical autoencoder
(HAE). (c) Determination of the optimal number of CVs. (d) Traditional autoencoder with the optimal number of CVs. (e) Sublevelset persistent homology and Morse-Smale
complex decomposition of the autoencoder-learned CV space. (f) Automatically extracted transition pathways.

TABLE I. Details of MD simulations.

Butane Cyclohexane Pentane
Temperature (K) 400 600 400
Simulation time (ns) 5 50
Trajectories are dumped 1 10 1
every No. of time steps
Total number of frames 5000 000

N = 3N, - 6, where N, is the number of backbone atoms. Assum-
ing the three atoms are A, B, and C, the local reference coordination
system is defined as follows:

rAB N éx X rpc e, X e

€x=17—> €= > éy: " e (4)
|rA3| |ex X YBC |ez X ex\
[
¢ |R=FR, (5)
e

where rap =rp—ra is the position vector from A to B, and R
and R’ are the coordinates of the atoms before and after being

transformed into the local reference coordination system. The first
three carbons of linear alkanes and three of the adjacent carbons
in cyclo-hexane are selected for constructing the local reference
coordination.

TRAINING OF THE AUTOENCODERS

Pytorch 1.10.0%° with CUDA 10.2** support was used in this
study. The architecture of our prototypical HAE consists of one
encoder and M decoders, where M varies from 1 to N, as illus-
trated in Fig. 2(b). Both the encoder and decoder are five-layer,
fully connected, feedforward neural networks. For the encoder part,
the input layer contains N neutrons, followed by three hidden lay-
ers with 64, 256, and 64 neutrons, respectively. The fifth layer
contains M nodes, which correspond to the M hierarchical CVs.
As for the decoder, the HAE consists of M decoders, which have
three hidden layers with 64, 256, and 64 neutrons as well. The mth
decoder reconstructs the input data from CV; to CVy. The loss
function is defined as the sum of reconstruction errors from all
the decoders,

M
Lossyakg = Z Xme, (6)
m
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FIG. 3. Learning curves of training. (a) and (d) Butane. (b) and (e) Pentane. (c) and (f) Cyclohexane. (a)—(c) The loss function of HAEs as a function of training epoch. (d)—(f)
The loss function of traditional autoencoders as a function of training epoch. The traditional autoencoders are trained with M = Mopin.

where yi.,, indicates the mean squared error between the input
samples and the reconstructed samples using the first m CVs. The
traditional autoencoder has the same architecture as HAE, except
that there is only one decoder that reconstructs the input from all
the CVs, as shown in Fig. 2(d). The loss function of the traditional
autoencoder is thus defined as

LOSSAE = X1 (7)

The Tanh activation function was used for all layers. We trained
the network for a maximum of 250 epochs with the Adam opti-
mizer”® with an exponentially decaying learning rate of 10> to 10>,
The resulting learning curves are shown in Fig. 3. Note that the num-
ber of CVs for the traditional autoencoders is set to Moptim, which
was obtained in the subsequent section.

DETERMINATION OF THE OPTIMAL NUMBER OF CVS

To determine the optimal number of CVs, denoted as Moprim,
we formulated an estimation of the variance contributed by each
hierarchical CV. The total variance, 62, of a set of samples, x, can
be expressed as

N N
02l = > var(xi) + Y. 2cov(xi x;), (8)

i=1 i<j

where var(x;) is the variance of the ith variable of x and
cov(xi,x;) is the covariance of the ith and jth variables. Assum-

ing the CVs learned by HAE are independent, d;,,,, can also be
written as

m
2 2 2
Ototal = ( Z Ucv,m') + Xi~m> &)
m'=1

where m’ is a dummy variable, ot

< 18 the variance contributed by

each CV, and Xme.Hence, each O'CZV can be computed through an
iterative process,

2 2 2
Ocy,1 = Ototal — X1> (10)
2 2 2 2
Ocy2 = Ototal — Ocy,l — X1~2> (11)
2 2 =, 2
OcvM = Ototal = Z Ocym | = X1~M- (12)
m=1

Herein, we used two approaches to estimate Mopim. The first

approach is to set a physically meaningful cutoff variance o7,

o and

2
optim > 0y

so that o2,y roff > UCZV,MDWH. If we consider the vibration of

the bonds as thermal noise, it is reasonable to define Uczutaﬂ by some

pre-factor times the variance of the bond length from the sample, i.e.,
afmﬁ = fo},,4 Note that this heuristically set threshold is human
understandable and can be defined differently depending on the
level of resolution of the molecule one wants to probe.
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FIG. 5. Determination of the optimal number of CVs through hierarchical variances from the first HAE ensemble, containing N trials, each with M = 1 ~ N. (a) Butane, (b)
pentane, and (c) cyclohexane. Dotted horizontal lines indicate fagond, where f = 1and 2.

The second approach is to examine the reproducibility of each
02, by repeating the training of HAE multiple times. Each training
session is a “trial” that randomly initializes the weights and biases of
the neural network and randomly shuffles the training batches. For
all three cases in this study, we trained two ensembles.

The first ensemble consists of six trials, all of which had
M = N; the second ensembles consists of N trials, each with
M = 1-N. The resulting o2, from the two ensemble are shown in
Figs. 4 and 5, respectively. We also plotted fo7,,, with f ranging
from 1 to 2, indicating which hierarchical CV started to explain
the bond vibrations. We found that o2, showed high reproducibil-
ity and a strictly descending order for the first several CVs before
they started to disagree from different trials. We used “ensemble
uncertainty” to describe this disagreement in ¢, and we attributed
its abrupt growth to the fitting of thermal noises by the HAEs
during learning. For the three cases in this study, we found that
setting f to 2 is a good choice as it avoids those deviations. The
M piim for the cases of butane, pentane, and cyclohexane are selected
as 2, 3, and 2 dimensions, respectively. We then trained tradi-
tional autoencoders with the obtained Mpsim. The CVs learned
by these traditional autoencoders are the ones we attempted to
give an explanation to. Reasons for giving explanations to tradi-
tional autoencoders instead of HAEs were discussed in the following
section.

COMPARISON BETWEEN HAES AND TRADITIONAL
AUTOENCODERS

To understand the differences between how a HAE and a
traditional autoencoder behave, we first compared their sample dis-
tribution in the CV space. Figure 6 compares the sample distribution
in the CV space (M = 2) by a HAE and a traditional autoencoder in
the case of gas phase butane. We found that HAE shows a trian-
gular distribution of the sample, while the traditional autoencoder
shows a circular distribution. It is no surprise that both autoencoders
showed a distribution of a one-dimensional loop that corresponds to
the dihedral angle of butane. This isomorphism indicates that both
autoencoders have learned identical relationships between the sam-
ples. However, the HAE distorted the one-dimensional loop where
the highly elongated part corresponds to the cis conformation where
the dihedral angle is close to 0. This is because imposing the impor-
tance ranking on a set of non-periodic CVs forces CV to explain as
much variance as possible. The consequence is that the HAE gave
up explaining less populated samples with CV; because those high
energy states contributed less to the reconstruction error solely from
CV. This can be verified by examining the y7, as shown in Fig. 6(e).
On the other hand, the traditional autoencoder gave a rather undis-
torted distribution of the samples as the dihedral angle is evenly
projected on CV; and CV,.
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coded with the dihedral angle.

Figure 7 shows the embedding of the samples with six trials of
HAEs and traditional autoencoders. We found that some of the trial
HAE:s elongated the distribution of the cis conformation while oth-
ers elongated the gauche conformations (the last trial HAE elongated
both conformations). We attributed this instability to the stochastic-
ity originated in the initial weights and biases of the neural networks
and the training batches during training. As for traditional autoen-
coders, the CVs corresponded to different projections of the dihedral
angles among different trails, but the distribution of the samples

remained undistorted and unaffected by the stochasticity during
training.

Table II shows the comparison of the reconstruction qual-
ity between HAE and traditional autoencoders by examining their
i~ My 1t is shown that the penalty imposed by the HAE resulted
in an increase in the reconstruction error by ~4%, ~91%, and ~10%
in the case of butane, pentane, and cyclohexane, respectively. The
degraded reconstruction quality is primarily contributed by the
samples in the highly distorted regions.

J. Chem. Phys. 160, 144104 (2024); doi: 10.1063/5.0191446
Published under an exclusive license by AIP Publishing

160, 144104-7

¥2:8¥'Z) 20T J8qWBAON L0


https://pubs.aip.org/aip/jcp

The Journal
of Chemical Physics

TABLE II. Comparison of the reconstruction quality between HAE and traditional

autoencoders.
X%~M.,‘,,,-m (A%
HAE (H) Traditional autoencoder (T) %T
Butane 24x107° 23x107° 0.04
Pentane 7.3x107° 3.8x107° 0.91
Cyclohexane 7.7 x 107 7.0 x 107 0.10

As mentioned in the previous section, HAEs and traditional
autoencoders learned the same topology about the samples, but they
exhibited a systematic distinction in the distribution of the sam-
ples due to the restrictions imposed by HAE. The distortion within
the autoencoder-learned FELs can be quantified by the Jacobian
determinant of the decoder,

o O
oCVv; 0CVy
J= L , (13)
O o dhy
oCVy OCVy

J=\/detJ"1], (14)

where h; is the ith output of the decoder. Figure 8 shows the value
of ] as a function of CVs. We found that HAE gives a very small J at
the cis conformation, indicating that a unit length in the CV space
corresponds to a small variation near the cis conformation in the
reconstructed space.

Combining the comparisons of reconstruction error and the
distribution of the samples, the traditional autoencoder seems
to learn a rather undistorted CV space. Therefore, we focus on
explaining the traditional autoencoders instead of HAEs using sub-
levelset persistent homology analysis and Morse-Smale complex
decomposition.

(A) H
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vy

90.00
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SUBLEVELSET PERSISTENT HOMOLOGY AND
MORSE-SMALE COMPLEX DECOMPOSITION

The Topology ToolKit (TTK)**’" was used to compute the
sublevelset persistent homology and Morse-Smale complex decom-
position. We defined the probability density (p) using the following

equation:
f & +66 [ fM,,P“m +6£Mop“m
& e, ’

optim

p(Elr- o Eog Gl = Si (15)
total

where ¢; is the variable along the ith CV, S is the number of sam-
ples within a high-dimensional cube ranging from (El,. . gMopnm)
to (& + 081, Ep + &fMuM)» and Sy is the total number of
samples. This is essentially creating a histogram for the samples in
the CV space. This is a naive density estimation approach and can
be sensitive to noise in higher dimensions, yet robust density estima-
tion techniques can be found in the literature, such as point-adaptive
k-nearest neighbors."” The probability density is proportional to the
Boltzmann factor at constant temperature, volume, and number of
particles,

P(fl; o aEM,,P[,-m) o e_P(El,m,gM"p”m )/kBT’ (16)

where F is the free energy, kg is the Boltzmann constant, and T is the
temperature. We then performed sublevelset persistent homology
analysis and Morse-Smale complex decomposition on the loga-
rithm of the probability density, which are proportional to the
autoencoder-learned FELs.

Figure 9 displays the results of topological representation in
the case of butane. Figure 9(a) displays the Morse-Smale com-
plex decomposition where critical points and ascending/descending
manifolds are visualized, and Fig. 9(b) shows the birth-death plot
representation of the persistent diagram. The birth-death plot visu-
alizes the emergence and disappearance of the topological features
in the sublevelset persistent homology and Morse-Smale complex.
To associate this birth-death plot with the topological features of
the FEL, we can imagine a sea level rising and gradually flooding
the FEL. A critical point of index n, denoted as C,, with a func-
tional value of Vj will be presented at (birth, death) = (V,, Vo),

(B) Traditional AE
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=
g oo
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FIG. 8. Comparison of the Jacobian determinant spanned by the CV space in the case of butane. (a) HAE. (b) Traditional autoencoder.
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indicating the “birth” of Cy. A vertical bar will be attached on top
of C, and ends at another critical point of index n + 1, denoted
as Cpy1, with a functional value of V; at (birth, death) = (Vo, V1),
indicating the “death” of C,. The length of the vertical bar indi-
cates the “persistence” of the critical point pair between C, and
Ch+1. This critical pair implies a pairing between two neighboring
transitions or stable states that share the same Morse-Smale com-
plex. In Fig. 9(a), we saw multiple critical points identified within
the same transition/stable state, even though butane should only
have three transitions and three stable states. This phenomenon
arises due to the noise induced during probability density esti-
mation, which generates multiple low persistence critical pairs.
We applied topological filtration to filter out low persistence crit-
ical pairs. Figures 9(c) and 9(d) show the Morse-Smale complex
and persistent diagram after the removal of low persistence criti-
cal pairs as they are caused by statistical noise. Critical points of
index 2 (red circles) and 1 (green circles) correspond to the sta-
ble states and transition states, respectively. The boundaries of the
ascending manifolds (red solid lines) partition the CV space into

regions of inherent structures, while the boundaries of the descend-
ing manifolds (black solid lines) are associated with the minimum
energy paths between stable states. Topological filtration of the
Morse-Smale complexes allows us to eliminate physically insignif-
icant thermal noise while retaining crucial topological states of the
FELs and their connections that are subsequently used for the recon-
struction of real-space molecular motions along the CVs (see Movie
S1). However, we acknowledge that the persistence threshold for
topological filtration is a parameter that necessitates manual tuning,
and a rigorous selection protocol has not been established in this
study. Automating this process could be a valuable area for future
research.

To further demonstrate the success of this method, we automat-
ically extracted the CVs and reconstructed the real-space molecular
motions along the CVs for gas phase pentane and cyclohexane. The
Morse-Smale complex and persistent diagram before and after topo-
logical filtration are displayed in Figs. 10 and 11, respectively. With-
out topological filtration, multiple critical points and Morse-Smale
complexes were identified due to noise induced in density estima-
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tion. Figures 11(a) and 11(b) show the Morse-Smale complex and
persistent diagram in the case of pentane after topological filtration.
Movie S2 provides a movie for viewing Fig. 11(a) from different
angles. Two primary 1-dimensional pathways were identified: (1)
The rotation of the first dihedral angle while the second dihedral
angle is in trans state (see Movie S3). (2) The rotation of the sec-
ond dihedral angle while the first dihedral angle is in trans state
(see Movie S4). The two 1-dimensional pathways correspond to the
boundary of the Morse-Smale complexes associated with the critical
points of index 1 (1-saddles) and 2 (local maxima). Figures 11(c)
and 11(d) show the results for cyclohexane; the two mirror sym-
metric transition pathways between chair, half-chair, twisted boat,
and boat conformations are well identified (see Movies S5 and S6).
Furthermore, we observed a rare transition pathway connecting two
chair states via a co-planer state near the center of the CV space (see
Movie S7). These movies intuitively disclose the physical meaning of
the otherwise elusive CVs.

To further illustrate the effect of the penalty imposed by the
HAE, we compared the resulting Morse-Smale complex decompo-
sition in gas phase butane, as illustrated in Fig. 12. The transition
pathways identified in the CV space from the HAEs were highly dis-
torted. Nearly 1/3 of the transition pathway was associated with the
cis conformation with trivial conformational change. On the other
hand, the transition pathways identified in the CV space of the tra-
ditional autoencoder distribute the conformational variation evenly.
Note that Fig. 12(b) is identical to Fig. 9(c). We also visualized the
sample distribution in the case of pentane with traditional autoen-
coders (Movie S8: color coded with the first dihedral angle, and
Movie S9: color coded with the second dihedral angle) and HAE
(Movie S10: color coded with the first dihedral angle, and Movie S11:
color coded with the second dihedral angle). From the sample dis-
tribution, we found that HAE exhibited a highly distorted CV space,
resulting in a large variance in the probability density estimation and
failure in Morse-Smale complex decomposition.
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CONCLUSION

In this paper, we present a general topology-based, explain-
able nonlinear DR method applicable to molecular trajectories. The
optimal number of CVs was found via two approaches: (1) Apply
the heuristic threshold, which holds physical significance, to hier-
archical variances, and (2) identify the abrupt rise in the ensemble
uncertainty of HAEs, which provides insights into the upper limit
of dimensions not associated with thermal noise. The autoencoder-
learned FELs are converted into topological representations, includ-
ing sublevelset persistent homology and the Morse-Smale complex,
which are invariant to the stochasticity imposed during the train-
ing of the neural networks. The former describes how the topol-
ogy of the accessible states varies with free energy and allows the
topological filtration to eliminate insignificant local motions while
preserving the global topology, while the latter provides a connec-
tion between autoencoder-learned CVs and real-space molecular
motions. The computations of both sublevelset persistent homol-
ogy and the Morse-Smale complex are expensive; nevertheless, the
method presented here can be applied to other molecular trajectories
in principle.

SUPPLEMENTARY MATERIAL

The supplementary material includes high resolution figures
and movies mentioned in the paper (Movies S1-S11).
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